Loading...
Search for: free-surface-modeling
0.01 seconds

    Numerical Simulation of Free Surface Flows Using Unstructured Grids

    , M.Sc. Thesis Sharif University of Technology Najafi, Saeed (Author) ; Seif, Mohammad Saeed (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    The Present Study Deals With The Numerical Modeling Of Free Surface Flows Using Unstructured Grids, That Is An Extension Of Later Studies At Research Institute Of Marine Engineering With The Goal Of Developing A Robust CFD Code. One Of The Most Applicable Aspects Of This Software Is Simulation Of Ship Maneuver And Calculation Of Hydrodynamic Resistance Of Floating Structures That Arises From Combination Of Equations Governing The Flow And 6DOF Rigid Body Equations. This Study Represents Some Proposed Algorithms For Solving Navier-Stokes Equations, Volume Fraction Equation And Rigid Body Equations In A Time Marching Manner. These Equations Are Discretized Based On A Collocated Arrangement For... 

    Comparison and Improving of Free Surface Modeling Methods In Moving Grids

    , M.Sc. Thesis Sharif University of Technology Jeddi, Reza (Author) ; Seif, Mohammad Saeed (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    In the present study a through comparison has been made between different free surface modeling methods. Methods for improving the current schemes are analyzed and studied. Among different proposed methods and based on the current in-house CFD solver’s limitations and capabilities, the Flux-Blending Strategy has been used for interface capturing in the framework of the Finite Volume Method (FVM). The proposed scheme has been coupled with other algorithms for improving the capabilities and functionality of the general computational fluid dynamic software, NUMELS, in order to simulate fluid flows with sharp interface.
    The improved interface capturing scheme uses the continuous switching... 

    Direct pore-scale modeling of two-phase flow: investigation of the effect of interfacial tension and contact angle

    , Article Special Topics and Reviews in Porous Media ; Volume 12, Issue 3 , 2021 , Pages 71-88 ; 21514798 (ISSN) Azizi, Q ; Hashemabadi, S. H ; Alamooti, A. H. M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    The process of fluid flow displacement in porous media has recently gained great prominence owing to its widespread usage in a variety of industries, especially in the case of pore scale investigations. Although, many studies have been conducted to address pore-scale investigations in both modeling and experimental approaches, the role of interfacial tension and contact angle on pore-scale phenomena is less focused. In this work, direct pore-scale modeling was used to precisely examine the effect of interfacial tension and contact angle on the fluid flow at the microscale. Also, several pore-scale mechanisms, including Haines jump and dynamic breakup mechanisms, were observed. Therefore, the... 

    2D numerical simulation of density currents using the SPH projection method

    , Article European Journal of Mechanics, B/Fluids ; Volume 38 , 2013 , Pages 38-46 ; 09977546 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Mahdinia, M ; Sharif University of Technology
    2013
    Abstract
    Density currents (DCs) or gravity currents are driven by gravity in a fluid environment with density variation. Smoothed Particle Hydrodynamics (SPH) has been proved to have capabilities such as free surface modeling and accurate tracking of the immiscible-fluids interface that can be useful in the context of gravity currents. However, SPH applications to gravity currents have been limited to often-coarse simulations of high density-ratio currents. In this work, the SPH projection method is tried to solve currents with very low density-ratios (close to one), at a resolution, that captures the Kelvin-Helmholtz instabilities at the fluids interface. Existing implementations of the SPH...