Loading...
Search for: fuel-cell-performance
0.008 seconds

    Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    , Article Renewable Energy ; Volume 35, Issue 1 , 2010 , Pages 226-231 ; 09601481 (ISSN) Hasani-Sadrabadi, M.M ; Dashtimoghadam, E ; Ghaffarian, S.R ; Hasani Sadrabadi, M.H ; Heidari, M ; Moaddel, H ; Sharif University of Technology
    2010
    Abstract
    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g -1, and 0.145 S cm -1, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the... 

    Numerical Simulation and Manufacture of a Proton Exchange Membrane Fuel Cell to Examine Mass and Charge Transport through Micro Porous Layers

    , M.Sc. Thesis Sharif University of Technology Asadzade, Mostafa (Author) ; Shamloo, Amir (Supervisor) ; Noori, Ali (Supervisor)
    Abstract
    Fuel cell is a power generator like internal combustion engines, but the first point is that internal combustion engines produce mechanical power while fuel cells produce electrical power. Secondly, internal combustion engines use hydrocarbon derivatives such as gas as fuel and their exhaust fumes are toxic gaseous, but fuel cells use hydrogen as fuel and their exhaust are only water in either vapor or liquid form. One of the most important issues in fuel cells is optimum design of micro channels of bipolar plates which is different regarding the type and application of fuel cells. Optimum designing of micro channels on bipolar plates plays a key role in fluid mass transport through micro... 

    Performance of a standalone wind-hydrogen power system for regions with seasonal wind profile: A case study in Khaf region

    , Article Sustainable Energy Technologies and Assessments ; Vol. 7 , September , 2014 , pp. 265-278 ; ISSN: 22131388 Ahmadi, S ; Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    Abstract
    The present study was aimed at performance and energy analysis of a hybrid wind-hydrogen power system. Such system consists of wind turbines, batteries for the short time energy storage, electrolyzer, fuel cell and hydrogen tank for long time energy storage. The proposed configuration is used to supply energy demand of a region with discrete seasonal wind speed regime. Temporary wind energy profiles restrict using batteries for electricity storage as they lose much electrical stored energy for the long time. Based on direct wind turbine usage, batteries and hydrogen storage, different energy supply strategies are introduced and analyzed to power the household electricity demand. The energy... 

    Effects of microhydrophobic porous layer on water distribution in polymer electrolyte membrane fuel cells

    , Article Journal of Fuel Cell Science and Technology ; Vol. 11, Issue. 1 , 2014 ; ISSN: 1550-624X Ahmadi, F ; Roshandel, R ; Sharif University of Technology
    Abstract
    Performance of polymer electrolyte membrane fuel cells (PEMFC) at high current densities is limited to transport reactants and products. Furthermore, large amounts of water are generated and may be condensed due to the low temperature of the PEMFC. Development of a two-phase flow model is necessary in order to predict water flooding and its effects on the PEMFC performance. In this paper, a multiphase mixture model (M2) is used, accurately, to model two-phase transport in porous media of a PEMFC. The cathode side, which includes channel, gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL), is considered as the computational domain. A multidomain approach has been used... 

    Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells

    , Article Renewable Energy ; Volume 50 , February , 2013 , Pages 921-931 ; 09601481 (ISSN) Roshandel, R ; Ahmadi, F ; Sharif University of Technology
    2013
    Abstract
    In this paper, numerical and analytical approaches are presented to evaluate the effect of catalyst loading gradient in the catalyst layer (CL) of a polymer electrolyte membrane (PEM) fuel cell. The model is developed based on agglomerate catalyst and accounts for reactant spices and charge (ion and electron) transport in the cathode side of a PEM fuel cell. The special variation of catalyst loading is considered in two direction, "across the layer" from membrane/CL interface to gas diffusion layer (GDL) and "in catalyst plane" under the channels and land areas in the channel direction. A fuel cell test stand is designed and built to facilitate experimental validation of the model. The... 

    An innovative three dimensional numerical model for bipolar plates to enhance the efficiency of PEM fuel cells

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 351-360 ; 9780791844823 (ISBN) Arbabi, F ; Roshandel, R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    The efficiency of proton exchange membrane (PEM) fuel cell is straightly correlated to the bipolar plate design and fluid channel arrangements. Higher produced energy can be attained by optimal design of type, size, or patterns of the channels. Previous researches showed that the bipolar plate channel design has a considerable effect on reactant distribution uniformity as well as humidity control in PEM fuel cells. This paper concentrates on enhancements in the fuel cell performance by optimization of bipolar plate design and channels configurations. A numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The results gained from... 

    A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design

    , Article Renewable Energy ; Volume 113 , 2017 , Pages 822-834 ; 09601481 (ISSN) Mohsenzadeh, M ; Shafii, M. B ; Jafari mosleh, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The use of solar energy concentration systems for achieving performance enhancements in the Photovoltaic/thermal hybrid solar systems and reduction of initial costs is an idea that has been studied for years. In this article a new structure for parabolic trough photovoltaic/thermal collector is proposed and its thermal and electrical performances are experimentally investigated. The receiver of this concentrator contains a triangular channel with an outer surface covered with photovoltaic cells and thermoelectric modules with a specific arrangement so that in addition to absorbing heat, a larger portion of the solar radiation is directly converted to electricity. Hence, the performance of... 

    Effect of operating conditions on the performance of a PEM fuel cell

    , Article International Journal of Heat and Mass Transfer ; Volume 144 , 2019 ; 00179310 (ISSN) Askaripour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a two-phase flow model based on species transport, energy, and electrochemical equations was developed for polymer electrolyte membrane fuel cell (PEMFC). The influences of heat sources and sinks, and water transport inside the fuel cell were also taken into account. In this regard, the effect of the operating conditions including cell temperature and pressure, anode and cathode inlet humidity, and anode and cathode stoichiometric ratios on the fuel cell performance was investigated. The simulation results show that inlet humidity and stoichiometric ratio of the anode side, cell pressure and temperature, and distribution of the heat sources and sinks are crucial factors... 

    Nonisothermal two-phase modeling of the effect of linear nonuniform catalyst layer on polymer electrolyte membrane fuel cell performance

    , Article Energy Science and Engineering ; Volume 8, Issue 10 , 2020 , Pages 3575-3587 Sabzpoushan, S ; Jafari Mosleh, H ; Kavian, S ; Saffari Pour, M ; Mohammadi, O ; Aghanajafi, C ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this research, it is investigated to numerically evaluate the performance of a polymer electrolyte membrane fuel cell (PEMFC). The performance is investigated through the nonuniformity gradient loading at the catalyst layer (CL) of the considered PEMFC. Computational fluid dynamics is used to simulate a 2D domain in which a steady-state laminar compressible flow in two-phase for the PEMFC has been considered. In this case, a particular nonuniform variation inside the CL along the channel is assumed. The nonuniform gradient is created using a nonisothermal domain to predict the flooding effects on the performance of the PEMFC. The computational domain is considered as the cathode of PEMFC,... 

    A numerical simulation to effectively assess impacts of flow channels characteristics on solid oxide fuel cell performance

    , Article Energy Conversion and Management ; Volume 244 , 2021 ; 01968904 (ISSN) Mehdizadeh Chellehbari, Y ; Adavi, K ; Sayyad Amin, J ; Zendehboudi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Solid oxide fuel cells (SOFCs) introduce a promising electrochemical conversion technology to generate electricity directly from fuel oxidization. A three-dimensional (3D) numerical model is proposed to evaluate the SOFC performance by employing computational fluid dynamics (CFD) approach based on the finite element method. This research includes simultaneously solving momentum, energy, and mass transport equations linked with the electrochemical reactions. First, the modeling results of a SOFC system with a rectangular channel in the absence of obstacles are compared with the experimental data, showing very good agreement. The effects of different shapes and numbers of obstacles on fuel... 

    New blend nanocomposite membranes based on PBI/sulfonated poly(ether keto imide sulfone) and functionalized quantum dot with improved fuel cell performance at high temperatures

    , Article International Journal of Energy Research ; Volume 45, Issue 15 , August , 2021 , Pages 21274-21292 ; 0363907X (ISSN) Hooshyari, K ; Rezania, H ; Vatanpour, V ; Rastgoo Deylami, M ; Rajabi, H. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this work, we reported the synthesis of a sulfonated poly(ether keto imide sulfone) (SPEKIS) using a novel aromatic diol containing nitrogen heterocycles and sulfonic monomer. New nanocomposite blend membranes were prepared using obtained SPEKIS and polybenzimidazole (PBI) with the incorporation of zinc sulfide (ZnS) functionalized quantum dots (FQDs) having both -COOH and NH2 groups with a solution-casting method and were used as proton exchange membranes. The SPEKIS and ZnS FQDs were used for the first time in the preparation of new nanocomposite blend membranes based on PBI. The purpose of this study is to investigate the effect of SPEKIS and ZnS FQDs on the PBI membrane performance in... 

    Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: A new application for microalgae

    , Article Bioresource Technology ; Volume 163 , July , 2014 , Pages 1-5 ; ISSN: 09608524 Mohammadpour, R ; Janfaza, S ; Abbaspour Aghdam, F ; Sharif University of Technology
    Abstract
    Here in this study, successful conversion of visible light into electricity has been achieved through utilizing microalgal pigments as a sensitizer of nanostructured photo-electrode of dye-sensitized solar cells (DSSCs). For the first time, photosynthetic pigments extracted from microalgae grown in wastewater is employed to imitate photosynthesis process in bio-molecule-sensitized solar cells. Two designs of photoanode were employed: 10μm nanoparticular TiO2 electrode and 20μm long self-ordered, vertically oriented nanotube arrays of titanium dioxide films. Microalgal photosynthetic pigments are loaded on nanostructured electrodes and their photovoltaic performances have been investigated.... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent...