Loading...
Search for: full-factorial-design
0.022 seconds

    Optimization of l-asparaginase immobilization onto calcium alginate beads

    , Article Chemical Engineering Communications ; Volume 204, Issue 2 , 2017 , Pages 216-220 ; 00986445 (ISSN) Bahraman, F ; Alemzadeh, I ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    In this study, anti-leukemic enzyme L-asparaginase (E.C.3.5.1.1) from Escherichia coli ATCC 11303 was modified by the microencapsulation technique onto calcium alginate beads. Using response surface methodology (RSM), a three-level full factorial design, the values of concentration of sodium alginate, concentration of calcium chloride, and enzyme loading were investigated to obtain the highest residual L-asparaginase (L-ASNase) activity % (immobilized enzyme activity/free enzyme activity). The effects of the studied factors on immobilization were evaluated The predicted values by the model were close to the experimental values, indicating suitability of the model. The results presented that... 

    Modeling and optimization of an ultrasonic setup basedon combination of finite element method and mathematical full factorial design

    , Article Advanced Materials Research, 6 August 2011 through 7 August 2011, Dalian ; Volume 320 , 2011 , Pages 553-558 ; 10226680 (ISSN) ; 9783037852118 (ISBN) Ghahramani Nick, M ; Akbari, J ; Movahhedy, M. R ; Hoseini, S. M ; Sharif University of Technology
    2011
    Abstract
    Ultrasonic assisted machining (UAM) is an efficient nontraditional machining operation for brittle, hard-to-cut and poor-machinability materials. In UAM, high frequency oscillation in ultrasonic range at low amplitude is imposed on the workpiece or cutting tool. In most cases, the equipments that generates and transfers the vibration, have a complicated structure, and requires significant effort to achieve their optimum function. In this work, a mathematical model is developed and an optimization method is employed for design process. This makes it possible to achieve proper setup and reduce the amount of calculation. For this purpose, the combination of a two level full factorial design is... 

    Predictive equations to estimate spinal loads in symmetric lifting tasks

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 84-91 ; 00219290 (ISSN) Arjmand, N ; Plamondon, A ; Shirazi Adl, A ; Larivière, C ; Parnianpour, M ; Sharif University of Technology
    2011
    Abstract
    Response surface methodology is used to establish robust and user-friendly predictive equations that relate responses of a complex detailed trunk finite element biomechanical model to its input variables during sagittal symmetric static lifting activities. Four input variables (thorax flexion angle, lumbar/pelvis ratio, load magnitude, and load position) and four model responses (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) are considered. Full factorial design of experiments accounting for all combinations of input levels is employed. Quadratic predictive equations for the spinal loads at the L4-S1 disc mid-heights are obtained by regression analysis with adequate...