Loading...
Search for: gas-dynamics
0.012 seconds
Total 22 records

    Rapid depressurization dynamics of solid propellant rocket motors

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 8 , 2007 , Pages 7871-7879 ; 1563479036 (ISBN); 9781563479038 (ISBN) Tahsini, A. M ; Farshchi, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Transient internal ballistics of a solid propellant rocket motor during rapid depressurization due to opening of an auxiliary nozzle for active thrust termination has been considered in this work. Prediction of thrust termination and reversing dynamics is required for successful stage separation in multi-stage rockets. Quasi one-dimensional unsteady Euler equation with a transient propellant burning model that accounts for the effects of time rate of change of the chamber pressure on the burning rate have been used to simulate the internal ballistics of a rocket motor. The compressible convective flow solver used in this study is based on Roe's scheme. The effects of rapid chamber pressure... 

    Velocity regulation of a solid fuel ramjet using neural networks and adaptive sliding control

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 74 DSC, Issue 1 PART A , 2005 , Pages 239-248 ; 0791842169 (ISBN); 9780791842164 (ISBN) Durali, M ; Alemohammad, H ; Sharif University of Technology
    2005
    Abstract
    This paper presents velocity control of a Solid Fuel Ramjet (SFRJ) in variable flight conditions. Since SFRJ is classified as an air breathing propulsion system its performance depends on the air flow over the solid fuel. Dynamic modeling of internal ballistics of SFRJ is developed using gas dynamic relations. This results in a set of nonlinear differential equations. The nonlinearity of equations comes from the fact that gas dynamic relations are generally nonlinear and since the value of some ballistic properties of SFRJ are inaccurate, uncertainties are available in dynamic equations. Then, an adaptive sliding controller is designed for velocity regulation of SFRJ. In order to design the... 

    Spectral method for solving differential equation of gas flow through a micro-nano porous media

    , Article Journal of Computational and Theoretical Nanoscience ; Volume 7, Issue 3 , 2010 , Pages 542-546 ; 15461955 (ISSN) Taghavi, A ; Parand, K ; Shams, A ; Sofloo, H. G ; Sharif University of Technology
    2010
    Abstract
    In this paper we propose, Spectral method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infinite interval. These approaches are based on Modified generalized Laguerre functions. These methods reduces the solution of this problem to the solution of systems of algebraic equations. We also compare this works with some other numerical results  

    Shock-wave-detection technique for high-speed rarefied-gas flows

    , Article AIAA Journal ; Volume 55, Issue 11 , 2017 , Pages 3747-3756 ; 00011452 (ISSN) Akhlaghi, H ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2017
    Abstract
    This paper introduces a shock-wave-detection technique based on the schlieren imaging for continuum and rarefied-gas flows. The scheme is applicable for any existing two-dimensional flowfields obtained by experimental or numerical approaches. A Gaussian distribution for a schlieren function within the shock-wave region is considered. This enables the authors to access any desired locations through the shock (e.g., shock center, or leading- and trailing-edge locations). The bow shock-wave profile is described via a rational function, which could be employed for the estimation of shock angle. The relation between pre- and postshock flow properties along the shock wave with a high resolution... 

    Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble

    , Article Ultrasonics ; Volume 102 , March , 2020 Nazari Mahroo, H ; Pasandideh, K ; Navid, H. A ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The effects of liquid density variation at the bubble surface on the dynamics of a single acoustic cavitation bubble are numerically studied. The Gilmore model together with a comprehensive hydrochemical model is used. The evaporation and condensation of water vapor are included in the hydrochemical model. The simulation results are compared to those resulting from the widely known Keller-Miksis model, which assumes a constant liquid density at the bubble surface. The numerical results for a single argon bubble in water reveal that the pressure and the temperature inside the bubble in collapse phase significantly increase, when the non-constant liquid density is used. These differences... 

    Unsteady three dimensional aerodynamic load prediction using neural networks

    , Article 2007 International Joint Conference on Neural Networks, IJCNN 2007, Orlando, FL, 12 August 2007 through 17 August 2007 ; 2007 , Pages 1995-1999 ; 10987576 (ISSN) ; 142441380X (ISBN); 9781424413805 (ISBN) Soltani, M. R ; Ghorbanian, K ; Gholamrezaei, M ; Amiralaei, M. R ; Sharif University of Technology
    2007
    Abstract
    The focus of the current research is to develop an intelligent design process that uses existing data as a tool for the designers, one that fully utilizes the ability of the computer to interpolate and extrapolate the scattered data. Surface pressure measurements were conducted for a pitch oscillation wing in a subsonic closed circuit wind tunnel. Experimental results have been used to train a multilayer perceptron network. This work indicates that neural networks can reliably predict aerodynamic coefficients and forecast the effects of reduced frequencies on the wind turbine blade performance. ©2007 IEEE  

    Effect of sinusoidal splitter on mixing performance of co-flow jets of hydrogen and air inside dual-combustor ramjet

    , Article Acta Astronautica ; Volume 180 , 2021 , Pages 211-217 ; 00945765 (ISSN) Sun, C ; Sharifi Rayeni, N ; Moghimihanjani, M ; Moradi, R ; Li, Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, the existence of a sinusoidal splitter on the formation and distribution of hydrogen and air co-jets are investigated in a dual-combustion ramjet engine. The main scope of this research is to analyze the comprehensive flow structure and flame features directly downstream of the sinusoidal splitter. In this work, shockwave/shear-layer interactions behind the sinusoidal splitter are thoroughly studied through a computational fluid dynamic approach. Two different splitter profiles are compared with a simple splitter to demonstrate the main effects of multi shock wave interactions on fuel distribution and penetrations. To simulate co-air jet, Reynolds Average Navier-Stocks... 

    Numerical investigation of thermo-fluid dynamics of two triangular jets

    , Article Mechanika ; Volume 17, Issue 2 , 2011 , Pages 149-155 ; 13921207 (ISSN) Chitsaz, I ; Farhanieh, B ; Sharif University of Technology
    2011
    Abstract
    This paper addresses the numerical simulation of thermo-fluid characteristics of triangular jets. The results of spatially developing, three dimensional jets from isosce-les and equilateral nozzles at different Reynolds numbers and distances between jets are presented. The system of governing equations, subject to the proper boundary condi-tions is solved with the finite volume method with collo-cated grid arrangement. SIMPLEC algorithm was used for the pressure-velocity coupling to discrete the governing equations of flow and energy. The turbulent stresses are approximated using k-ε model. The velocity and tempera-ture fields are presented and rates of their decay at jet cen-terline are... 

    Pore network modeling of nanoporous ceramic membrane for hydrogen separation

    , Article Separation Science and Technology ; Volume 45, Issue 14 , Sep , 2010 , Pages 2028-2038 ; 01496395 (ISSN) Moeini, M ; Farhadi, F ; Sharif University of Technology
    2010
    Abstract
    Pore network modeling of porous media has this advantage that can consider the pore structure incorporating any desired details, but it has not been studied sufficiently. In addition, most studies are limited to mathematical modeling only which need validation. In the present study, this approach was applied to hydrogen separation from syngas by nanoporous ceramic membrane to predict the membrane permeance theoretically based on its pore structure. Gas transport through nanoporous membrane was modeled with the aim of a 2D network model. A dusty gas model was used for gas transport in the individual pores. Model validation showed that the model predictions are in good agreement with the... 

    Numerical investigation of corner angle and wing number effects on fluid flow characteristics of a turbulent stellar jet

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 46, Issue 1 , 2009 , Pages 25-37 ; 09477411 (ISSN) Faghani, E ; Saemi, S ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2009
    Abstract
    In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using k-ε and k-ω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15-65° corner angles are studied. Also the effect of... 

    Aeroelastic stability consideration of supersonic flight vehicle using nonlinear aerodynamic response surfaces

    , Article Journal of Fluids and Structures ; Volume 25, Issue 6 , 2009 , Pages 1079-1101 ; 08899746 (ISSN) Fathi Jegarkandi, M ; Nobari, A. S ; Sabzehparvar, M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    Aeroelastic stability of a flexible supersonic flight vehicle is considered using nonlinear dynamics, nonlinear aerodynamics, and a linear structural model. Response surfaces including global multivariate orthogonal modeling functions are invoked to derive applied nonlinear aerodynamic coefficients. A modified Gram-Schmidt method is utilized to orthogonalize the produced polynomial multivariate functions, selected and ranked by predicted squared error metric. Local variation of angle-of-attack and side-slip angle is applied to the analytical model. Identification of nonlinear aerodynamic coefficients of the flight vehicle is conducted employing a CFD code and the required analytical model... 

    An experimental investigation of the reduced frequency effects into pressure coefficients of a plunging airfoil

    , Article 7th International Conference on Advances in Fluid Mechanics, AFM'08, The New Forest, 21 May 2008 through 23 May 2008 ; Volume 59 , 2008 , Pages 153-161 ; 17433533 (ISSN); 9781845641092 (ISBN) Mani, M ; Ajalli, F ; Soltani, M. R ; WIT Transactions on Engineering Sciences ; Sharif University of Technology
    2008
    Abstract
    Aerodynamic coefficients on a two dimensional plunging airfoil, in a low-speed wind tunnel are presented. Dynamic motion was produced by plunging the model over a range of reduced frequencies, and mean angles of attack. The Reynolds number in the present test was held fixed (Re = 1.5×10 5), and the reduced frequency was varied in an almost wide range. Surface static pressure distribution was measured on the upper and lower sides of the model, during the oscillating motion. It was found that reduced frequency had strong effects on the pressure distribution, near the leading edge of the airfoil. For mean equivalent angles of attack of 0, 5 degrees, hysteresis loops on the upper surface of the... 

    Experimental and numerical investigation of fluid dynamics of the bounded and unbounded triangular jets

    , Article Proceedings of the ASME Turbo Expo, 9 June 2008 through 13 June 2008, Berlin ; Volume 5, Issue PART A , 2008 , Pages 41-47 ; 9780791843154 (ISBN) Riahi, R ; Bagheri, F ; Farhanieh, B ; Sharif University of Technology
    2008
    Abstract
    In the present study, the fluid characteristics of triangular turbulent jet flow are considered experimentally and numericafly. The results of spatially developed three- dimensional jet, issued from an equilateral triangular nozzle are presented. The jet is discharged to both bounded and unbounded domains. Because of the wind tunnel set up restrictions, the experimental study has done just for the bounded domain. The hot-wire anemometry is used for experimental study. A numerical method employing control volume approach with collocated grid arrangement which couples the velocity and pressure fields with SIMPLEC algorithm is introduced to discrete the governing equations of fluid flow. The... 

    Jet into cross flow boundary layer control an innovation in gas turbine blade cooling

    , Article 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, ON, 6 June 2005 through 9 June 2005 ; 2005 ; 9781624100598 (ISBN) Javadi, K ; Taeibi Rahni, M ; Darbandi, M ; Sharif University of Technology
    2005
    Abstract
    New standpoint of turbulent coolant jets into crossflow, which have numerous applications in traditional and modern technology, especially in gas turbine blades, is presented in this work. It is more than half a century that, many researchers have been studying jet into cross flow to understand its behavior and to predict and control it better. Previous studies indicate that, the main attentions had been on: a- geometrical parameters such as: inclined and compound jet angles, hole's shape, jet's array arrangements, jet's spacing, and jet's channel depth, b- flow characteristics like: blowing ratio, density ratio, jet and cross flow Reynolds numbers, and turbulence intensity. Here, we have... 

    Effect of reduced frequency on the aerodynamic behavior of an airfoil oscillating in a plunging motion

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 40-52 ; 10263098 (ISSN) Soltani, M. R ; Rasi Marzabadi, F ; Sharif University of Technology
    2009
    Abstract
    A series of low speed wind tunnel tests were conducted to study the unsteady aerodynamic behavior of an airfoil sinusoidally oscillating in plunge. The experiments included measuring the surface pressure distribution over a range of reduced frequencies, k = 0.03 - 0.06. In addition, steady state data were acquired and were used to furnish a baseline for further analysis and comparison. The model was oscillated with amplitude of ±15 cm and at three different mean angles of attack of 0, 10° and 18°. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces. The plunging displacements were transformed into... 

    Panel flutter analysis of general laminated composite plates

    , Article Composite Structures ; Volume 92, Issue 12 , November , 2010 , Pages 2906-2915 ; 02638223 (ISSN) Kouchakzadeh, M. A ; Rasekh, M ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    The problem of nonlinear aeroelasticity of a general laminated composite plate in supersonic air flow is examined. The classical plate theory along with the von-Karman nonlinear strains is used for structural modeling, and linear piston theory is used for aerodynamic modeling. The coupled partial differential equations of motion are derived by use of Hamilton's principle and Galerkin's method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping on the nonlinear aeroelastic... 

    Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model

    , Article Journal of Fluids and Structures ; Volume 25, Issue 8 , 2009 , Pages 1243-1257 ; 08899746 (ISSN) Shahverdi, H ; Salehzadeh Noubari, A ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    This paper presents a coupled flap-lag-torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton-Raphson method. Numerical results comprising steady equilibrium... 

    Comparison of pitching and plunging effects on the surface pressure variation of a wind turbine blade section

    , Article Wind Energy ; Volume 12, Issue 3 , 2009 , Pages 213-239 ; 10954244 (ISSN) Soltani, M. R ; Seddighi, M ; Rasi Marzabadi, F ; Sharif University of Technology
    2009
    Abstract
    Numerous experiments were conducted on an oscillating airfoil in a subsonic wind tunnel. The experiments involved measuring the surface pressure distribution when the model oscillated in two types of motion, pitch and plunge, at three different Reynolds numbers, 0.42, 0.63 and 0.84 million, and over a range of reduced frequencies, k = 0.03 0.09. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphasis was placed on the effects of different types of motion on the unsteady pressure distribution of the airfoil at pre-stall, near-stall and post-stall conditions. It was... 

    Aeroelasticity consideration of supersonic vehicle using closed form analytical aerodynamic model

    , Article Aircraft Engineering and Aerospace Technology ; Volume 81, Issue 2 , 2009 , Pages 128-136 ; 00022667 (ISSN) Fathi Jegarkandi, M ; Salezadeh Nobari, A ; Mahdi, S ; Hassan, H ; Farhad, T ; Sharif University of Technology
    2009
    Abstract
    Purpose - The purpose of this paper is to investigate the aeroelastic behavior of a supersonic flight vehicle flying at moderate angles of attack using global analytic nonlinear aerodynamic model. Design/methodology/approach - Aeroelastic behavior of a supersonic flight vehicle flying at moderate angles of attack is considered, using nonlinear aerodynamics and linear elastodynamics and structural models. Normal force distribution coefficient over the length of the vehicle and pitching moment coefficient are the main aerodynamic parameters used in the aeroelastic modeling. It is very important to have closed form analytical relations for these coefficients in the model. They are generated... 

    Nonlinear aeroelastic response of slender wings based on Wagner function

    , Article Thin-Walled Structures ; Volume 46, Issue 11 , 2008 , Pages 1192-1203 ; 02638231 (ISSN) Shams, Sh ; Sadr Lahidjani, M. H ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    This paper presents a method for nonlinear aeroelastic analysis of Human Powered Aircraft (HPA) wings. In this type of aircraft there is a long, highly flexible wing. Wing flexibility, coupled with long wing span can lead to large deflections during normal flight operation; therefore, a wing in vertical and torsional motion using the second-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic theory based on Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulations yields the nonlinear integro-differentials aeroelastic equations. Using the Galerkin's...