Loading...
Search for: gas-sensing-applications
0.005 seconds

    Characterization of porous poly-silicon impregnated with Pd as a hydrogen sensor

    , Article Journal of Physics D: Applied Physics ; Volume 38, Issue 1 , 2005 , Pages 36-40 ; 00223727 (ISSN) Rahimi, F ; Iraji Zad, A ; Razi, F ; Sharif University of Technology
    2005
    Abstract
    Porous poly-silicon (PPS) samples, obtained by electrochemical anodization of p-type poly-silicon wafers, were doped with Pd by the electroless process. Rutherford backscattering spectroscopy shows that Pd has diffused a few micrometres into the PPS layer. Scanning electron microscopy and energy dispersive x-ray analysis results demonstrate the presence of Pd as dispersed clusters on the surface. The variation of the electrical resistance in the presence of dry air diluted with hydrogen at room temperature shows that Pd/PPS samples have the ability to sense hydrogen at levels down to several thousands of ppm. This value is far below the flammability limit of hydrogen gas. It was found that... 

    Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures

    , Article Journal of Alloys and Compounds ; Volume 628 , April , 2015 , Pages 222-229 ; 09258388 (ISSN) Hosseini, Z. S ; Mortezaali, A ; Iraji Zad, A ; Fardindoost, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Pursuing a sensing structure with a large effective surface area, partial ordered arrays of ZnO nanorods with flower-like structures are introduced for gas sensing applications. Room temperature H2S response of the grown structure shows significant enhancement after modification with Au nanoparticles. High response (about 1270 at 6 ppm H2S gas) and selectivity were achieved by depositing an Au layer with nominal thickness ∼6 nm. X-ray photoelectron spectroscopy (XPS) was utilized to describe the H2S sensing mechanism  

    Low temperature nanocrystalline TiO 2-Fe 2O 3 mixed oxide by a particulate sol-gel route: Physical and sensing characteristics

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 46 , September , 2012 , Pages 43-51 ; 13869477 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Nanocrystalline TiO 2-Fe 2O 3 thin films and powders were prepared by a straightforward aqueous particulate sol-gel route at the low temperature of 300 °C. Titanium(IV) isopropoxide and iron(III) chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powder crystallised at the low temperature of 300 °C, containing anatase-TiO 2 and hematite-Fe 2O 3 phases. Furthermore, it was found that Fe 2O 3 retarded the anatase-to-rutile transformation up to 500 °C. The activation energies for crystallite growth of TiO 2... 

    Synthesis of nanostructured and nanoporous TiO2-AgO mixed oxide derived from a particulate sol-gel route: Physical and sensing characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 8 , August , 2011 , Pages 2481-2492 ; 10735623 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO... 

    Synthesis and characterisation of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: Physical and sensing properties

    , Article Sensors and Actuators, B: Chemical ; Volume 155, Issue 2 , July , 2011 , Pages 568-576 ; 09254005 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanostructured TiO2-ZrO2 thin films and powders were prepared by a straightforward aqueous particulate sol-gel route. Titanium (IV) isopropoxide and zirconium (IV) acetate hydrate were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy revealed that the powder were crystallised at the low temperature of 500 °C, containing anatase-TiO 2 and tetragonal-ZrO2 phases. Furthermore, it was found that ZrO2 retarded the anatase-to-rutile transformation up to 900 °C. The activation energies for crystallite growth of TiO2 and ZrO2 components in... 

    Nanostructured TiO2-CeO2 mixed oxides by an aqueous sol-gel process: Effect of Ce:Ti molar ratio on physical and sensing properties

    , Article Sensors and Actuators, B: Chemical ; Volume 150, Issue 2 , 2010 , Pages 631-640 ; 09254005 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanostructured TiO2-CeO2 thin films and powders were prepared by a straightforward aqueous particulate sol-gel route. Titanium (IV) isopropoxide and cerium chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. The effect of Ce:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders crystallised at the low temperature of 500 °C, containing anatase-TiO2, rutile-TiO2 and cubic-CeO2 phases, as well as Ti 8O15, Ti3O5 and Ce 11O20 depending on annealing temperature and Ce:Ti molar...