Loading...
Search for: gas-separation-efficiency
0.005 seconds

    Amino-silane-grafted NH2-MIL-53(Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation

    , Article Dalton Transactions ; Volume 48, Issue 36 , 2019 , Pages 13555-13566 ; 14779226 (ISSN) Ahmadijokani, F ; Ahmadipouya, S ; Molavi, H ; Arjmand, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Mixed-matrix membranes (MMMs) are promising candidates for carbon dioxide separation. However, their application is limited due to improper dispersion of fillers within the polymer matrix, poor interaction of fillers with polymer chains, and formation of defects and micro-voids at the interface of both phases, which all result in the decline of the gas separation performance of MMMs. In this work, we present a new method to overcome these challenges. To this end, a series of MMMs based on polyethersulfone (PES) as the continuous polymer matrix and MIL-53-derived MOFs as the dispersed filler were prepared. FTIR-ATR, XRD, TGA, FESEM, and N2 adsorption/desorption analyses were employed to... 

    Experimental and numerical study of the gas-gas separation efficiency in a Ranque-Hilsch vortex tube

    , Article Separation and Purification Technology ; Vol. 138, issue , Dec , 2014 , p. 177-185 Mohammadi, S ; Farhadi, F ; Sharif University of Technology
    Abstract
    A brass vortextube is used to carry out a series of experiments. The main objective of the present research is to investigate the separation performances of a vortex tube (VT) for a hydrocarbon mixture. Examination is also applied to study the effects of nozzle intakes number and cold fraction on the gas species separation at specific inlet pressure 236.37 kPa in a VT with two gas mixtures (LPG as a hydrocarbon mixture and LPG-N2). A two-dimensional computational fluid dynamic (CFD) model simulation of a VT is presented. CFD code after validation is also applied to investigate the role of cold fraction and nozzle intakes number on the gas species separation. The highly rotating flow field...