Loading...
Search for: gene-transfer-techniques
0.006 seconds

    Carbon nanotubes in cancer therapy: A more precise look at the role of carbon nanotube-polymer interactions

    , Article Chemical Society Reviews ; Volume 42, Issue 12 , Feb , 2013 , Pages 5231-5256 ; 03060012 (ISSN) Adeli, M ; Soleyman, R ; Beiranvand, Z ; Madani, F ; Sharif University of Technology
    2013
    Abstract
    Despite the great potential of carbon nanotubes (CNTs) in various areas of biomedicine, concerns regarding their carcinogenicity, inefficient dispersion in aqueous solutions and biological activity in vivo still remain. One important and feasible route to overcome these barriers is modification of CNTs with polymers, which are widely studied and play a vital role in biological and biomedical fields, especially in drug delivery. This comprehensive review focuses on the achievements of our and other groups in currently used methods to functionalize the surface of CNTs with polymers to produce anticancer drug delivery systems. We have intensively studied covalent and noncovalent interactions... 

    Recent advances in the modification of carbon-based quantum dots for biomedical applications

    , Article Materials Science and Engineering C ; Volume 120 , 2021 ; 09284931 (ISSN) Alaghmandfard, A ; Sedighi, O ; Tabatabaei Rezaei, N ; Abedini, A. A ; Malek Khachatourian, A ; Toprak, M. S ; Seifalian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface... 

    Recent advances in the modification of carbon-based quantum dots for biomedical applications

    , Article Materials Science and Engineering C ; Volume 120 , 2021 ; 09284931 (ISSN) Alaghmandfard, A ; Sedighi, O ; Tabatabaei Rezaei, N ; Abedini, A. A ; Malek Khachatourian, A ; Toprak, M. S ; Seifalian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface... 

    Histidine-enhanced gene delivery systems: The state of the art

    , Article Journal of Gene Medicine ; Volume 24, Issue 5 , 2022 ; 1099498X (ISSN) Hooshmand, S. E ; Jahanpeimay Sabet, M ; Hasanzadeh, A ; Kamrani Mousavi, S. M ; Haeri Moghaddam, N ; Hooshmand, S. A ; Rabiee, N ; Liu, Y ; Hamblin, M. R ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine,... 

    Bottom-up synthesis of nitrogen and oxygen co-decorated carbon quantum dots with enhanced DNA plasmid expression

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 184 , 2019 ; 09277765 (ISSN) Yadegari, A ; Khezri, J ; Esfandiari, S ; Mahdavi, H ; Karkhane, A. A ; Rahighi, R ; Heidarimoghadam, R ; Tayebi, L ; Hashemi, E ; Farmany, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, a bottom-up hydrothermal route is reported for the synthesis of oxygen and nitrogen co-decorated carbon quantum dots (CQDs) using ammonium hydrogen citrate (AHC) as a single precursor. DLS data approved the formation of 4.0 nm (average size) CQDs. XRD pattern shows the interlayer spacing (002) of 3.5 Å for CQDs, which is exactly the same as that of crystalline graphite. XPS and FTIR spectra verified the formation of oxygen and nitrogen functional groups on the CQDs surface. Co-decorated carboxyl, hydroxyl and amine groups on the CQDs surfaces make them as promising polyelectrolyte for gene delivery. Toxicity assay showed a survival rate of 70% under different incubation times... 

    Polymer-Coated NH2-UiO-66 for the codelivery of DOX/pCRISPR

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 9 , 2021 , Pages 10796-10811 ; 19448244 (ISSN) Rabiee, N ; Bagherzadeh, M ; Heidarian Haris, M ; Ghadiri, A. M ; Matloubi Moghaddam, F ; Fatahi, Y ; Dinarvand, R ; Jarahiyan, A ; Ahmadi, S ; Shokouhimehr, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Herein, the NH2-UiO-66 metal organic framework (MOF) has been green synthesized with the assistance of high gravity to provide a suitable and safe platform for drug loading. The NH2-UiO-66 MOF was characterized using a field-emission scanning electron microscope, transmission electron microscope (TEM), X-ray diffraction, and zeta potential analysis. Doxorubicin was then encapsulated physically on the porosity of the green MOF. Two different stimulus polymers, p(HEMA) and p(NIPAM), were used as the coating agents of the MOFs. Doxorubicin was loaded onto the polymer-coated MOFs as well, and a drug payload of more than 51% was obtained, which is a record by itself. In the next step, pCRISPR was... 

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting...