Loading...
Search for: generation-frequency
0.007 seconds

    Experimental investigation of on-demand ferrofluid droplet generation in microfluidics using a Pulse-Width Modulation magnetic field with proposed correlation

    , Article Sensors and Actuators, B: Chemical ; Volume 329 , 2021 ; 09254005 (ISSN) Bijarchi, M. A ; Favakeh, A ; Alborzi, S ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Micro-magnetofluidics offers a promising tool to regulate the drop formation process with versatile applications in engineering and biomedicine. In the present study, on-demand ferrofluid drop generation at a T-junction is investigated utilizing a magnetic pulse. Also, a novel method for ferrofluid droplet formation is introduced using a non-uniform Pulse-Width Modulation (PWM) magnetic field. A novel mechanism of drop generation named “beating regime” was seen for the first time in which the ferrofluid moves back and forth before the breakup. The effect of the magnetic induction, continuous phase flow rate, duty cycle, and applied frequency on the generation frequency and drop diameter was... 

    An input-to-state stability approach to inertial frequency response analysis of doubly-fed induction generator-based wind turbines

    , Article IEEE Transactions on Energy Conversion ; Volume 32, Issue 4 , 2017 , Pages 1418-1431 ; 08858969 (ISSN) Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Due to the proliferation of wind turbines in power networks, participation of doubly-fed induction generator (DFIG)-based wind turbines in the frequency regulation task is attracting more attention during recent decades. It is a challenge to design an effective DFIG's auxiliary frequency controller, since back-to-back converters used in DFIG make the possibility of large deviations in current and speed of rotor during frequency support period. Hence, it is necessary to use exact expression of DFIG's output power in the frequency-related studies. This paper addresses this challenge by developing a nonlinear dynamic model for the DFIG's output power integrated into the dynamic model of power... 

    Modeling and control of variable speed wind turbine generators for frequency regulation

    , Article IEEE Transactions on Sustainable Energy ; Volume 11, Issue 2 , 2020 , Pages 916-927 Ravanji, M. H ; Canizares, C. A ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Wind turbine generators (WTG) can participate in system frequency regulation via virtual inertial controllers (VIC). In the presence of frequency disturbances, VIC temporarily regulates the WTG power output forcing it to release/absorb kinetic energy into/from the grid. With increasing penetration of WTGs in power systems, grid operators require these generators to provide frequency regulation services; however, kinetic energy release/absorption can destabilize WTGs. Hence, to address these issues, a new large-perturbation nonlinear WTG model is proposed in this paper, based on the WTG internal response that is used to tune typical VICs. Novel worst case and optimal VIC tuning approaches are... 

    The effects of excitation control systems on parallel operation of DG with the main grid

    , Article International Journal of Power and Energy Systems ; Volume 28, Issue 4 , 2008 , Pages 438-447 ; 10783466 (ISSN) Kazemi, S ; Parniani, M ; Rasouli, M ; Sharif University of Technology
    2008
    Abstract
    This paper presents actual cases of steady reactive power oscillation of distributed generations (DGs) during parallel operation with the main grid. The cause of the problem was found to be the adverse effects of excitation system voltage regulation. It is shown, through preliminary investigation and detailed simulation studies, that how the excitation control system can be modified to overcome this problem. On-site test results verify the analysis results and effectiveness of the remedial actions. Finally, general practical recommendations are offered for excitation control of synchronous generator-based DG, such that it performs properly, both in grid connected and in islanding conditions