Loading...
Search for: geometrical-configurations
0.005 seconds

    Deflection and vibration analysis of a spherical structure using a newly designed spherical super element

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 9 , 2010 , Pages 249-256 ; 9780791844465 (ISBN) Ahmadian, M. T ; Nasiri Sarvi, M ; Nasiripour, A. A ; Sharif University of Technology
    2010
    Abstract
    The Finite Element Methods (FEM) are important numerical techniques for analysis of physical problems. Quick prediction of dynamic and static response of structures is one of the interests of both industry and scientists. One of the key elements to achieve this goal is 3D super element compatible with regular geometrical configuration by which a series of structures can be analyzed with less time and higher accuracy. In this paper, a newly designed spherical super element is presented. In this super element, the user can enjoy as many numbers of nodes as he wishes and consequently reaches thedesired accuracy and consuming computational time. It can also be used to analyze structures from... 

    Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels

    , Article Physics of Fluids ; Volume 29, Issue 12 , 2017 ; 10706631 (ISSN) Sadeghi, M ; Saidi, M. H ; Moosavi, A ; Sadeghi, A ; Sharif University of Technology
    Abstract
    Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any... 

    Numerical simulation of MHD mixed convection flow of Al2O3–water nanofluid over two hot obstacles

    , Article Heat Transfer ; Volume 51, Issue 4 , 2022 , Pages 3237-3256 ; 26884534 (ISSN) Hosseini Abadshapoori, M ; Saidi, M. H ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The problem of cooling two hot blocks in a novel geometry using magnetohydrodynamic flow of Al2O3–water nanofluid has been studied utilizing a D2Q9 Lattice Boltzmann Model. While the Hartmann number (Ha) takes 0, 50, or 100 values, the Richardson number (Ri) varies between 0.02 and 20. Four variations of the geometry are selected. The gravity angle is set to be either (Formula presented.), (Formula presented.), or (Formula presented.). Results reveal that the Nusselt number (Nu) increases as Ri increases for all cases. Furthermore, the Hartmann number has a deteriorating effect on the Nusselt number except for low Ri numbers. In addition, the results indicate that while the geometrical... 

    A validated numerical-experimental design methodology for a movable supersonic ejector compressor for waste-heat recovery

    , Article Journal of Thermal Science and Engineering Applications ; Volume 6, Issue 2 , Oct , 2014 ; 19485085 (ISSN) Alimohammadi, S ; Persoons, T ; Murray, D. B ; Tehrani, M. S ; Farhanieh, B ; Koehler, J ; Sharif University of Technology
    Web Portal ASME (American Society of Mechanical Engineers)  2014
    Abstract
    The aim of this paper is to develop the technical knowledge, especially the optimum geometries, for the design and manufacturing of a supersonic gas-gas ejector for a wasteheat driven vehicle cooling system. Although several studies have been performed to investigate the effects of geometrical configurations of gas-gas ejectors, a progressive design methodology of an ejector compressor for application to a vehicle cooling system has not yet been described. First, an analytical model for calculation of the ejector optimum geometry for a wide range of operating conditions is developed, using R134a as the working fluid with a rated cooling capacity of 2.5 kW. The maximum values of entrainment... 

    Pore-level experimental investigation of ASP flooding to recover heavy oil in fractured five-spot micromodels

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; June , 2015 , Pages 1033-1058 ; 9781510811621 (ISBN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Although Alkaline-Surfactant-Polymer (ASP) flooding is proved to be efficient for heavy oil recovery, the displacement mechanisms/efficiency of this process should be discussed further in fractured porous media especially in typical waterflood geometrical configurations such as five-spot injection-production pattern. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels which were initially saturated with heavy oil. The ASP flooding tests were conducted at constant injection flow rates and different fracture geometrical characteristics were used. The ASP solutions constituted of five polymers, two surfactants and three alkaline types. The results... 

    Heavy oil recovery using ASP flooding: A pore-level experimental study in fractured five-spot micromodels

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 4 , 2016 , Pages 779-791 ; 00084034 (ISSN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Wiley-Liss Inc  2016
    Abstract
    Although alkaline-surfactant-polymer (ASP) flooding has proven efficient for heavy oil recovery, the displacement mechanisms and efficiency of this process should be discussed further in fractured porous media. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels with a typical waterflood geometrical configuration, i.e. five-spot injection-production pattern. The ASP flooding tests were conducted at constant injection flow rates but different fracture geometrical characteristics. The ASP solutions consisted of five polymers, two surfactants, and three alkaline types. It was found that using synthetic polymers, especially hydrolyzed polyacrylamide... 

    Precision of direction of arrival (DOA) estimation using novel three dimensional array geometries

    , Article AEU - International Journal of Electronics and Communications ; Volume 75 , 2017 , Pages 35-45 ; 14348411 (ISSN) Poormohammad, S ; Farzaneh, F
    Elsevier GmbH  2017
    Abstract
    Numerous methods for direction of arrival (DOA) estimation, used in smart antennas have been already reported in previous studies. The precision of DOA estimation depends on the choice of the algorithm and the geometrical configuration of the antenna array. In this work, the performance of new geometrical configurations, i.e. 2D with equal area and 3D with equal volume including circular, square, triangular, hexagonal and star geometries, with equal number of antenna elements, are examined and compared to each other to find the most proper geometry. Monte-Carlo simulations are performed to evaluate the DOA precision of the proposed arrays using the MUSIC algorithm. It is shown that in three... 

    Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers

    , Article International Journal of Thermal Sciences ; Volume 139 , 2019 , Pages 105-117 ; 12900729 (ISSN) Mostafazade Abolmaali, A ; Afshin, H ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    This research aims to investigate the thermo-hydraulic characteristics of flow in the shell side of spiral-wound heat exchangers with consistent shell geometry. To achieve this end, three-dimensional computational fluid dynamics is employed. Geometrical configuration of spiral-wound heat exchangers can be completely determined by knowing six primary parameters including start factor, tube outside diameter, number of tubes in the first layer, number of layers, longitudinal pitch, and radial pitch. Dividing the longitudinal and radial pitches by tube outside diameter, the six primary geometrical parameters reduce to five non-dimensional parameters. The effects of number of tubes in the first... 

    Evaluation of the seismic performance factors for steel diagrid structural systems using FEMA P-695 and ATC-19 procedures

    , Article Bulletin of Earthquake Engineering ; Volume 18, Issue 10 , 2020 , Pages 4873-4910 Rofooei, F. R ; Seyedkazemi, A ; Sharif University of Technology
    Springer  2020
    Abstract
    The diagrid structural systems are mainly used for their structural capabilities and architectural aesthetic possibilities which are provided by the unique geometric configurations of these systems. However, the seismic performance factors of these structural systems are not yet explicitly recommended in the existing building codes. In this study, the seismic performance factors (SPFs) of 6- to 24-story steel diagrid structures are determined considering the post-buckling behavior of diagonal members in compression. Also, the effect of change in span length and the diagonal angles on the SPFs of diagrid structures is studied. The ATC-19 coefficient method is used for calculating the SPFs... 

    Structured multiblock body-fitted grids solution of transient inverse heat conduction problems in an arbitrary geometry

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 54, Issue 3 , July , 2008 , Pages 260-290 ; 10407790 (ISSN) Azimi, A ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    2008
    Abstract
    The aim of this study is to develop iterative regularization algorithms based on parameter and function estimation techniques to solve two-dimensional/axisymmetric transient inverse heat conduction problems in curvilinear coordinate system. The multiblock method is used for geometric decomposition of the physical domain into regions with patched-overlapped interface grids. The central finite-difference version of the alternating-direction implicit technique together with structured body-fitted grids is implemented for numerical solution of the direct problem and other partial differential equations derived by inverse analysis. The approach of estimating unknown parameters and functions is... 

    An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine

    , Article Journal of Biomechanics ; Volume 44, Issue 8 , 2011 , Pages 1521-1529 ; 00219290 (ISSN) Gagnon, D ; Arjmand, N ; Plamondon, A ; Shirazi Adl, A ; Larivière, C ; Sharif University of Technology
    Abstract
    Muscle force partitioning methods and musculoskeletal system simplifications are key modeling issues that can alter outcomes, and thus change conclusions and recommendations addressed to health and safety professionals. A critical modeling concern is the use of single-joint equilibrium to estimate muscle forces and joint loads in a multi-joint system, an unjustified simplification made by most lumbar spine biomechanical models. In the context of common occupational tasks, an EMG-assisted optimization method (EMGAO) is modified in this study to simultaneously account for the equilibrium at all lumbar joints (M-EMGAO). The results of this improved approach were compared to those of its...