Loading...
Search for: geometrical-variations
0.005 seconds

    Analysis and simulation of asymmetrical nanoscale self-switching transistor

    , Article International Journal of Modelling and Simulation ; 2021 ; 02286203 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this paper, we present a computational study on the electrical behaviour of self-switching transistors (SSTs) based on InGaAs/InP heterojunction. Our simulation is based on the solution of Poisson and Schrodinger equations self-consistently by using Finite Element Method (FEM). By using this method, electrical characteristics of device, such as (Formula presented.) ratio, subthreshold swing, and intrinsic gate-delay time are investigated. Also, the effects of geometrical variations on the electrical parameters of SSTs are simulated. We show that appropriate design of the device allows current modulation exceeding (Formula presented.) at room temperature. © 2021 Informa UK Limited, trading... 

    Analysis and simulation of asymmetrical nanoscale self-switching transistor

    , Article International Journal of Modelling and Simulation ; Volume 42, Issue 5 , 2022 , Pages 775-781 ; 02286203 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, we present a computational study on the electrical behaviour of self-switching transistors (SSTs) based on InGaAs/InP heterojunction. Our simulation is based on the solution of Poisson and Schrodinger equations self-consistently by using Finite Element Method (FEM). By using this method, electrical characteristics of device, such as (Formula presented.) ratio, subthreshold swing, and intrinsic gate-delay time are investigated. Also, the effects of geometrical variations on the electrical parameters of SSTs are simulated. We show that appropriate design of the device allows current modulation exceeding (Formula presented.) at room temperature. © 2021 Informa UK Limited, trading... 

    Geometrical control of transverse electromagnetic wave propagation in nonuniform microwave superconducting transmission lines

    , Article Journal of Physics: Conference Series, 13 September 2009 through 17 September 2009 ; Volume 234, Issue PART 4 , 2010 ; 17426588 (ISSN) Haghdoust, M ; Mehrany, K ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    It is well known that photonic structures with subwavelength features can be homogenized and thus be accurately approximated by homogeneous yet spatially dispersive structures. This idea is here applied to nonuniform superconducting transmission lines with subwavelength nonuniformities, i.e. subcentimeter features in the microwave regime. A closed form expression is found for the equivalent characteristic impedance and propagation constant of a uniform transmission line that can accurately model the transverse electromagnetic (TEM) propagation within nonuniform superconducting transmission lines with subwavelength inhomogeneities. It is shown that electromagnetic wave propagation, in...