Loading...
Search for: geometry-effect
0.004 seconds

    Investigation of wall shear stress related factors in realistic carotid bifurcation geometries and different flow conditions

    , Article Scientia Iranica ; Volume 17, Issue 5 B , 2010 , Pages 358-366 ; 10263098 (ISSN) Jamalian Ardakani, S. S ; Jafarnejad, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Abstract
    Cardiovascular diseases are one of the major causes of death in the world; atherosclerosis being one aspect. Carotid bifurcation is one of the sites that are vulnerable to this disease. Wall Shear Stress (WSS) is known to be responsible for the process of atherogenesis. In this study, we have simulated the blood flow for Newtonian and non-Newtonian, steady and unsteady, flow conditions in three idealistic and five realistic geometries. A risk factor has been presented based on the results of wall shear stress and, then, a relation was found between geometrical features and the wall shear stress risk factor. Our main conclusions are: 1) The non-Newtonian behavior of blood elevates the value... 

    Geometry effects in Eulerian/Granular simulation of a turbulent FCC riser with a (kg-g)-KTGF model

    , Article International Journal of Chemical Reactor Engineering ; Volume 8 , 2010 ; 15426580 (ISSN) Nazif, H. R ; Basirat Tabrizi, H ; Farhadpour, F. A ; Sharif University of Technology
    Abstract
    Three-dimensional, transient turbulent particulate flow in an FCC riser is modeled using an Eulerian/Granular approach. The turbulence in the gas phase is described by a modified realizable (kg-g) closure model and the kinetic theory of granular flow (KTGF) is employed for the particulate phase. Separate simulations are conducted for a rectangular and a cylindrical riser with similar dimensions. The model predictions are validated against experimental data of Sommerfeld et al (2002) and also compared with the previously reported LES-KTGF simulations of Hansen et al (2003) for the rectangular riser. The (kg-g)-KTGF model does not perform as well as the LES-KTGF model for the riser with a... 

    Numerical simulation for efficient mixing of newtonian and non-Newtonian fluids in an electro-osmotic micro-mixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 107 , 2016 , Pages 11-20 ; 02552701 (ISSN) Shamloo, A ; Mirzakhanloo, M ; Dabirzadeh, M. R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study, deals with a new mixing technique using a two-phase electrode array, which is charged with alternating current (AC) signals, located in specific parts of the geometry. This significantly contributes to a chaotic mixing mechanism using a low amplitude AC voltage within a micro-channel. Study analysis demonstrates that the optimization of the effective parameters such as geometrical features, voltage amplitude, fluid inlet velocity, AC frequency and phase lag for a defined fluid can lead to an optimum and highly efficient mixer by considerably increasing disturbances in a primary highly ordered laminar flow. Three different geometries of micro mixer are studied; one-ring... 

    Investigation of the atomic-scale hysteresis in NC-AFM using atomistic dynamics

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 8 , 2010 , Pages 2069-2077 ; 13869477 (ISSN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, the hysteresis in the tipsample interaction force in noncontact force microscopy (NC-AFM) is measured with the aid of atomistic dynamics simulations. The observed hysteresis in the interaction force and displacement of the system atoms leads to the loss of energy during imaging of the sample surface. Using molecular dynamics simulations it is shown that the mechanism of the energy dissipation occurs due to bistabilities caused by atomic jumps of the surface and tip atoms in the contact region. The conducted simulations demonstrate that when a gold coated nano-probe is brought close to the Au(0 0 1) surface, the tip apex atom jumps to the surface, and instantaneously, four... 

    Effects of temperature on wear behavior of a plasma sprayed diesel engine cylinder

    , Article SAE Technical Papers ; 2012 Ghorashi, M. S ; Farrahi, G. H ; Eftekhari, M. R ; Sharif University of Technology
    SAE  2012
    Abstract
    One of the main subjects in automotive industries is to enhance the efficiency of internal combustion engines. Wear between cylinder and ring is one of the major parameters reducing the engine performance. So many parameters are affecting the wear losses. Temperature plays a key role on the severity of wear condition in internal combustion engines. In conventional cast iron cylinders, it is not possible to increase the temperature from a defined level, as it causes excessive wear in contact area between cylinder liner and piston ring. One of the major benefits of using ceramic coating is their ability to withstand in higher temperatures, while having adequate hardness to improve wear rate...