Loading...
Search for: gfrp
0.006 seconds
Total 39 records

    Numerical modeling of reinforced concrete columns strengthened with composite materials

    , Article Asian Journal of Civil Engineering ; Volume 14, Issue 4 , 2013 , Pages 557-576 ; 15630854 (ISSN) Barkhordari, M. A ; Dayhima, N ; Nicknama, A ; Razia, M ; Mehdizadb, S ; Sharif University of Technology
    2013
    Abstract
    The use of Near-surface Mounted (NSM) FRP bars is an efficient strengthening technique to enhance the flexural strength of RC structures. This article is intended to analytically investigate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) bars in combination with GFRP wraps on the flexural capacity of reinforced concrete (RC) columns with Fiber Element Modeling approach. The accuracy and reliability of the proposed fiber-based modeling method is demonstrated by numerical models on seven half-scale experimental RC reference columns under axial and cyclic lateral loads. These reference specimens are comprised of seven half-scale RC columns including two unstrengthened and five... 

    Effect of elevated temperatures on the compressive behavior of timber filled steel and pultruded GFRP tubes

    , Article Composite Structures ; Volume 271 , 2021 ; 02638223 (ISSN) Shekarchi, M ; Yekrangnia, M ; Biniaz, A ; Raftery, G. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study examines the use of timber as a filler material for steel and pultruded GFRP tube elements and the performance of these sections is compared to solid timber columns, hollow steel and hollow pultruded GFRP tube element after exposure to elevated temperature. In total, 102 specimens were fabricated and exposure to elevated temperature ranging from 20 to 700 °C was evaluated. It was found out that filled tubes using timber could improve the compressive strength and stiffness of tubular section specimens up to 73 and 212 percent, respectively. Timber filled steel tube (TFST) and hollow steel tube specimens had a better performance at elevated temperature in comparison to other... 

    Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing

    , Article Materials and Structures/Materiaux et Constructions ; Volume 50, Issue 6 , 2017 ; 13595997 (ISSN) Vatani Oskouei, A ; Pirgholi Kivi, M ; Araghi, H ; Bazli, M ; Sharif University of Technology
    Abstract
    This paper presents the results of an experimental study of structural lightweight concrete with glass fiber reinforcement (GFRP) bar for prefabricated single footing. In this study, seven full scale concrete single footings specimens, which were reinforced by GFRP bar located on a bed of soil, were tested. One of the specimens was made of normal weight concrete and the others were made of structural lightweight concrete. Four of the lightweight footing specimens contained polymer fibers. Also, two of the lightweight footing specimens contained shear reinforcement. Results indicated that the maximum GFRP strain on normal weight and lightweight concrete footing with polypropylene fibers are... 

    Effect of seawater on pull-out behavior of glued-in single rods set parallel to the grain of timber joints

    , Article Construction and Building Materials ; Volume 222 , 2019 , Pages 342-357 ; 09500618 (ISSN) Shekarchi, M ; Majdabadi Farahani, E ; Vatani Oskouei, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper experimentally investigates the effects of seawater on pull-out behavior of single rods glued in timber parallel to grain. Considering different rod diameters (6, 8, 10 mm), slenderness ratios (7.5, 10, 15), rebar materials (steel and GFRP), and immersion time in seawater (0, 10, 20, 30, 60, 90 days), 324 specimens were tested. Mean strength reduction about 39 and 55 percent was observed for 90-day immersed joints constructed with GFRP and steel rebars, respectively. Rebar diameter and slenderness ratio significantly influenced ultimate loads, and dominant failure mode was at adhesive/timber interface. Finally, two novel strength models were developed empirically. © 2019 Elsevier... 

    Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles

    , Article Construction and Building Materials ; Volume 231 , 2020 Bazli, M ; Jafari, A ; Ashrafi, H ; Zhao, X. L ; Bai, Y ; Singh Raman, R. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The present research examines the effects of UV radiation, moisture and elevated temperature on the mechanical properties of GFRP pultruded profiles. Flexural, compressive and tensile properties of different GFRP sections were studied after they were exposed for 1000, 1500, 2000 and 3000 h to UV radiation and water vapour condensation cycles. Mechanical tests, including three-point bending, compression and tension tests, SEM analyses, and statistical studies were conducted to gather comprehensive results. The results showed that the mechanical properties of various GFRP sections generally decreased with the duration of conditioning: however, the rate of the decrease that was only slight up... 

    The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profiles

    , Article Construction and Building Materials ; Volume 249 , July , 2020 Khaneghahi, M. H ; Najafabadi, E. P ; Bazli, M ; Vatani Oskouei, A ; Zhao, X. L ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The compressive performance of glass fiber reinforced polymer (GFRP) profiles subjected to elevated temperature was investigated through a large number of (3 0 0) tests. The effects of profile cross-sectional area, slenderness, and temperature on the behavior of the GFRP profiles at temperatures ranging from 25 to 400 °C were determined. It was observed that the compressive strength of the GFRP profiles has been decreased by half as the temperature exceeded 90 °C, i.e., close to the glass transition temperature of the matrix. The temperature and ratio of cross-sectional area to external perimeter were determined as two major parameters affecting section capacity. © 2020 Elsevier Ltd  

    Experimental investigation of square RC column strengthened with near surface mounted GFRP bars subjected to axial and cyclic lateral loads

    , Article Scientia Iranica ; Volume 20, Issue 5 , 2013 , Pages 1361-1371 ; 10263098 (ISSN) Dayhim, N ; Nicknam, A ; Barkhordari, M. A ; Hosseini, A ; Mehdizad, S ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This article is intended to highlight the effectiveness of longitudinal Glass Fiber Reinforced Polymer (GFRP) bars in combination with GFRP sheets on the flexural capacity of Reinforced Concrete (RC) columns. Seven half-scale RC columns including five strengthened and two control unstrengthened specimens were experimentally tested under axial and cyclic lateral loads. The strengthened columns with two different longitudinal GFRP bar ratios were tested under three different axial load levels. The flexural strength and ductility parameters of the specimens were calculated by obtaining their deformations and measuring the loads from load cells. The experimental results indicate significant... 

    Compressive Response of Cylindrical Concrete Columns Confined with Steel Spirals and GFRP Composites

    , M.Sc. Thesis Sharif University of Technology Soltani, Hesam (Author) ; Khalu, Alireza (Supervisor)
    Abstract
    Concrete structures require reinforcement and retrofitting because of possible mistakes in design or calculation, inconformity between plan and implementation, change in occupancy or applied loads, and decay. Development in technology, production of materials, and new methods play important roles in development of structure construction and reinforcement methods. Emerge of new materials creates great demand in studying, surveying, and determining design characteristic and criteria for these materials. One of these materials is FRP composite which is used in concrete structure reinforcement in different ways. In this laboratory research, the effect of external wrapping by GFRP composite... 

    Tensile properties of GFRP laminates after exposure to elevated temperatures: Effect of fiber configuration, sample thickness, and time of exposure

    , Article Composite Structures ; Volume 238 , 2020 Ashrafi, H ; Bazli, M ; Jafari, A ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study investigates the tensile properties of various GFRP laminates after exposure to elevated temperatures. Fiber configuration, exposure temperature and laminate thickness were considered as the test variables. A total number of 180 specimens were tested in tension to obtain the mechanical properties of GFRP laminates. Alongside the mechanical tests, SEM analyses were conducted on selected samples before testing to investigate the resin, fiber, and their interface damages. Regardless of the sample type, it was generally observed that the reduction rate in the tensile strength increased with an increase in the exposure time and a decrease in the laminates’ thickness. The results of... 

    The axial and lateral behavior of low strength concrete confined by GFRP wraps: an experimental investigation

    , Article Structures ; Volume 27 , October , 2020 , Pages 747-766 Khaloo, A ; Tabatabaeian, M ; Khaloo, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The purpose of this investigation is to investigate the axial and lateral behavior of low strength concrete confined by glass fiber reinforced polymer (GFRP) wraps. A total of 48 cylindrical samples having 150 mm diameter and 300 mm height were strengthened and examined. The mix designs were provided with four different target strength (5, 10, 15, and 20 MPa). The axial and lateral strain were studied to evaluate the axial strain relation and the lateral strain for axial compression. The results of this investigation present a comparison between the nine models previously reported for normal strength concrete and the lesser-known context of low strength concrete confined by fiber reinforced... 

    The effect of elevated temperatures on the tensile performance of GFRP and CFRP sheets

    , Article Construction and Building Materials ; Volume 190 , 2018 , Pages 38-52 ; 09500618 (ISSN) Jarrah, M ; Pournamazian Najafabadi, E ; Houshmand Khaneghahi, M ; Vatani Oskouei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the effects of fiber type (i.e., carbon and glass fibers) and intumescent paint on the tensile performance of fiber reinforced polymer (FRP) sheets at elevated temperatures are investigated. For this purpose, a series of tensile tests were conducted on the glass and carbon fiber reinforced polymer (GFRP and CFRP) sheets, with and without intumescent fire retardant paint, at different elevated temperatures. The studied temperatures ranged from 25 °C to 600 °C. Scanning electron microscopy was also used to examine the effects of elevated temperatures on FRP sheets and the fire protecting mechanism of the intumescent paint. Based on the test results, the tensile strength of the... 

    Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperatures

    , Article Construction and Building Materials ; Volume 202 , 2019 , Pages 189-207 ; 09500618 (ISSN) Jafari, A ; Bazli, M ; Ashrafi, H ; Vatani Oskouei, A ; Azhari, S ; Zhao, X. L ; Gholipour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study was aimed at gaining an improved understanding of the behavior of glass fiber-reinforced polymer laminates at elevated temperatures by means of testing laminate specimens with unidirectional, woven, and randomly distributed (chopped strand mat) fibers. The testing parameters were temperature, the type of fiber, and the thickness of the laminates. The failure modes of the specimens and their elasticity moduli at ambient temperature were investigated, and analysis of variance was conducted to determine the contribution of each parameter to the behavioral test results. The findings showed that among the parameters, an increase in temperature exerted the strongest effect on the... 

    Effect of compressive glass fiber-reinforced polymer bars on flexural performance of reinforced concrete beams

    , Article ACI Structural Journal ; Volume 119, Issue 6 , 2022 , Pages 5-18 ; 08893241 (ISSN) Hassanpour, S ; Khaloo, A ; Aliasghar Mamaghani, M ; Khaloo, H ; Sharif University of Technology
    American Concrete Institute  2022
    Abstract
    This research studies the effect of glass fiber-reinforced polymer (GFRP) bars as compressive reinforcement in reinforced concrete (RC) beam members. Three singly and six doubly reinforced GFRP-RC beams were tested under a four-point loading configuration. The effect of compressive reinforcement on the load-bearing capacity, ductility, stiffness, and failure mode is determined. Also, the compressive performance of GFRP bars is evaluated by testing GFRP-RC cylinders. According to the results, GFRP bars in compression had a limited contribution to enhancing flexural strength, and the maximum increment in the flexural capacity of doubly reinforced beams compared to singly reinforced specimens... 

    Numerical Investigation of the Performance of Concrete Beamcolumns with FRP Bars under Concentric and Eccentric Loading and Four-Points Bending

    , M.Sc. Thesis Sharif University of Technology Aghabozorgi, Pegah (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Glass Fiber Reinforced Polymer (GFRP) bars with significant corrosion resistance lead to an improvement in the performance of concrete structures and a significant reduction in costs. High ratio of tensile strength to weight, non-conductive, and non-magnetic properties are other features of GFRP bars. Recent international design standards, such as ACI 440.1R-15 do not recommend including FRP reinforcement in compression, so they replace them by concrete in calculations. The purpose of this study was to investigate the effect of concentric and excentric axial loading on the axial capacity and ductility of GFRP reinforced concrete columns compared to steel reinforced concrete columns,... 

    Experimental Investigations on RC Arches Strengthened Using GFRP Sheets

    , M.Sc. Thesis Sharif University of Technology Kazemian, Alireza (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    A total of twenty-four reinforced concrete arches with dimensions of 110 × 30 × 10 cm were casted, fabricated and tested. There are three variables, including: height to span ratio, longitudinal reinforcement ratio and arrangement and number of FRP layers.Based on results, with increasing height to span ratio, the efficiency of FRP strengthening method decreases. It is due to the fact that FRP materials inherently behave better in tension. From another point of view, in lower arches (L group) extrados bonding technic has better effect on increasing peak load of the arches, while in higher ones (H group) intrados bonding is discerned as the best method of strengthening. This paradoxical... 

    Effect of Ultrasonic Assisted Machining on Mechanical Properties of Carbon Fiber Composite Laminates

    , M.Sc. Thesis Sharif University of Technology Soltanzadeh, Tohid (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Ultrasonically assisted machining process has been introduced as an effective solution to improve machining quality of mechanical parts. This study aims to reduce the drilling induced delamination to increase mechanical properties of CFRP laminates. Delamination decreases the strength of laminates under static and dynamic loads. Drilling parameters (feed and spindle speed) and ultrasonic vibrations amplitude are chosen as design experiment factors. Taguchi design of experiments method is used to study the effect of input factors on drilling thrust force, delamination factor and residual strength of drilled laminates. Input factors are in three levels and Taguchi L9 array is utilized. To... 

    Experimental Investigations on Reinforced Concrete Slabs Strengthening by FRP Sheets

    , M.Sc. Thesis Sharif University of Technology Asna Ashary Esfahani, Mansour (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    A total of four reinforced concrete slabs with dimension of 2200×1000×100 mm strengthened with different layers of GFRP sheets were fabricated and tested. A loading of the slabs was performed using displacement control approach.In addition, nonlinear finite element analysis (NLFEA) using ANSYS package was used to simulate the behavior of the test specimens. After reasonable validation of NLFEA with the experimental test results of companion slabs, NLFEA was expanded to provide a parametric study of sixty two slabs. Forty two numbers of these sixty two slabs were without any opening and were modeled for different type of concrete strength, ratio of length/wide for slabs, type of FRP, number... 

    Applying ultrasonic vibration to decrease drilling-induced delamination in GFRP laminates

    , Article Procedia CIRP, Leuven ; Volume 6 , April , 2013 , Pages 577-582 ; 22128271 (ISSN) Mehbudi, P ; Baghlani, V ; Akbari, J ; Bushroa, A. R ; Mardi, N. A ; Sharif University of Technology
    2013
    Abstract
    Delamination is a major problem in drilling of fiber-reinforced composite materials. Thrust force is an important factor leading to propagation of delamination during drilling process. One of effective methods to reduce machining forces is application of ultrasonic vibrations. In this study ultrasonic assisted drilling is applied to reduce thrust force in drilling of GFRP laminates. In order to conduct experiments a setup is designed and fabricated to apply both vibrations and rotation to drill bits. Using Taguchi method, a set of experiments is conducted with feed rate, spindle speed, and ultrasonic vibration amplitude as control factors. The results show that applying ultrasonic vibration... 

    Effect of thickness and reinforcement configuration on flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures

    , Article Composites Part B: Engineering ; Volume 157 , 2019 , Pages 76-99 ; 13598368 (ISSN) Bazli, M ; Ashrafi, H ; Jafari, A ; Zhao, X.-L ; Gholipour, H ; Oskouei, A. V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study investigates the flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures. The effect of fibre's length and orientation, laminate's thickness, and exposure time is studied. A total number of 540 tests in terms of three-point bending and Charpy impact tests were conducted to obtain the mechanical properties. In addition, SEM analyses were carried out to investigate the degradation mechanisms. Finally, statistical study was conducted to investigate the contribution of each variable and develop probabilistic models using ANOVA and linear Bayesian regression method. The results showed that generally the flexural and impact properties of GFRP laminates... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,...