Loading...
Search for: gibbsite-particles
0.005 seconds

    The relation between particle size and transformation temperature of gibbsite to αLPHA-alumina

    , Article Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy ; 2020 Ahmadabadi, M. N ; Nemati, A ; Arzani, K ; Baghshahi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    The transformation of gibbsite to α-alumina occurs in the range 1100 to 1300°C. The higher the calcination temperature, the larger the crystallites and this leads to abnormal grain growth. The main goal of this research was to reduce the transformation temperature of gibbsite to α-alumina by reducing the gibbsite particles size. The sodium content of the gibbsite used in the study was reduced to less than 0.1% by washing it in HCl solution. It was then ground in a fast mill at ambient conditions for different times then calcined at different temperatures. The microstructure, particles size and thermal behaviour of the samples were examined with SEM, XRD, XRF, PSA and STA, respectively. In a... 

    The relation between particle size and transformation temperature of gibbsite to αLPHA-alumina

    , Article Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy ; Volume 131, Issue 2 , 2022 , Pages 111-121 ; 25726641 (ISSN) Ahmadabadi, M.N ; Nemati, A ; Arzani, K ; Baghshahi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The transformation of gibbsite to α-alumina occurs in the range 1100 to 1300°C. The higher the calcination temperature, the larger the crystallites and this leads to abnormal grain growth. The main goal of this research was to reduce the transformation temperature of gibbsite to α-alumina by reducing the gibbsite particles size. The sodium content of the gibbsite used in the study was reduced to less than 0.1% by washing it in HCl solution. It was then ground in a fast mill at ambient conditions for different times then calcined at different temperatures. The microstructure, particles size and thermal behaviour of the samples were examined with SEM, XRD, XRF, PSA and STA, respectively. In a...