Loading...
Search for: glass-membrane-electrodes
0.009 seconds
Total 53 records

    Construction of Pt nanoparticle-decorated graphene nanosheets and carbon nanospheres nanocomposite-modified electrodes: Application to ultrasensitive electrochemical determination of cefepime

    , Article RSC Advances ; Volume 4, Issue 15 , 2014 , Pages 7786-7794 ; ISSN: 20462069 Shahrokhian, S ; Hosseini Nassab, N ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    A novel ultrasensitive modified electrode was fabricated with a graphene nanosheets and carbon nanospheres (GNS-CNS)-based nanocomposite film as a powerful platform. Pt nanoparticles (PtNPs) were simply electrodeposited onto the GNS-CNS-coated glassy carbon electrode creating a PtNPs/GNS-CNS hybrid nanocomposite modified electrode. Scanning electron microscopy, energy dispersive X-ray spectroscopy and linear sweep voltammetry (LSV) techniques were used for the characterization of the prepared modified electrode. The results of investigation of electrochemical response characteristics of cefepime (CP) revealed a considerable improvement in the oxidation peak current of CP on PtNPs/GNS-CNS/GCE... 

    Nano composite coating based on cellulose nanofibers/carbon nanoparticles: application to voltammetric determination of clonazepam

    , Article Journal of Solid State Electrochemistry ; Vol. 19, issue. 1 , 2014 , p. 251-260 Shahrokhian, S ; Balotf, H ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    A novel electrochemical sensor for clonazepam (CLNP) was fabricated based on immobilizing cellulose nanofibers/carbon nanoparticles (CNFs/CNPs) nanocomposite on glassy carbon electrode (CNFs/CNPs/GCE). The combination of CNFs and CNPs produced a novel kind of structurally uniform and electro-analytically active nanocomposite. The surface morphology of CNFs/CNPs layer deposited onto glassy carbon electrode was characterized by scanning electron microscopy. The results of the voltammetric investigations showed a considerable enhancement in the cathodic peak current of CLNP (up to 60 times) on the surface of CNFs/CNPs/GCE relative to the bare GCE. Under the optimal conditions, the modified... 

    Ultra-sensitive detection of leukemia by graphene

    , Article Nanoscale ; Vol. 6, issue. 24 , Dec , 2014 , p. 14810-14819 Akhavan, O ; Ghaderi, E ; Hashemi, E ; Rahighi, R ; Sharif Universit of Technology
    Abstract
    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ∼20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ∼10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks... 

    Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode

    , Article Sensors and Actuators, B: Chemical ; Volume 185 , 2013 , Pages 669-674 ; 09254005 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    2013
    Abstract
    For the first time graphene nanosheets and carbon nanospheres/chitosan (GNS-CNS/CS) based nanocomposite film modified electrode was used for the electro-oxidation of mebendazole (MD). MD is a benzimidazole drug that is used to treat human infections caused by parasitic worms. MD causes slow immobilization and death of the worms by selectively and irreversibly blocking uptake of glucose. The electrochemical behavior of MD at GNS-CNS/CS modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry in aqueous media at different pHs. The prepared electrode showed an excellent electrochemical activity toward the electro-oxidation of MD leading to a... 

    Application of glassy carbon electrode modified with a carbon nanoparticle/melamine thin film for voltammetric determination of raloxifene

    , Article Journal of Electroanalytical Chemistry ; Volume 780 , 2016 , Pages 126-133 ; 15726657 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Balotf, H ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    As a selective estrogen receptor modulator, raloxifene (RXF) prevent of osteoporosis in postmenopausal women by estrogenic actions on bone and decreases the risk of invasive breast cancer by anti-estrogenic actions on the breast and uterus tissue. However, RXF may increase the risk of blood clots, including deep vein thrombosis and pulmonary embolism. For the first time glassy carbon electrode modified with a thin film of melamine/carbon nanoparticles (CNPs/Mela) was constructed and used for the sensitive voltammetric determination of RXF. In comparison with unmodified electrode, the presence of the CNPs/Mela film resulted in a remarkable increase in the peak currents and sharpness of the... 

    Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate

    , Article Sensors and Actuators, B: Chemical ; Volume 239 , 2017 , Pages 617-627 ; 09254005 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In the present study, a 3D porous graphene-carbon nanotube (G-CNT) network is successfully constructed on the surface of glassy carbon electrode (GCE) by electrochemical co-deposition from a concentrated graphene dispersion. The large accessible surface area provided by the interpenetrated graphene backbone in one hand and the enhanced electrical conductivity of the 3D network by incorporating CNTs on the other hand, dramatically improved the electrochemical performance of GCE in determination of Methotrexate (MTX) as an important electroactive drug compound. Under the optimum conditions, the electrode modification led to a significant increase in the anodic peak current (∼25 times) along... 

    Development of an electrochemical sensor based on (rGO-CNT) nanocomposite for raloxifene analysis

    , Article Materials Chemistry and Physics ; Volume 263 , 2021 ; 02540584 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Navabi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A novel modified electrode is reported for the electrochemical investigation of the oxidation mechanism and also voltammetric determination of raloxifene (RLX). The surface of the electrode was modified with a thin layer of reduced graphene oxide-carbon nanotube nano-composite (rGO-CNT) was prepared, and successfully employed for the electrochemical studies of RLX. The morphology of the sensor surface was characterized by using a scanning electron microscopy. RLX Oxidation response significantly increased at the GCE covered with rGO-CNT, regarding the bare and CNT or rGO functionalized GCE. Experimental parameters affecting the RLX response were optimized and mechanism of the RLX oxidation... 

    In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine

    , Article Sensors and Actuators, B: Chemical ; Vol. 196 , June , 2014 , pp. 582-588 ; ISSN: 09254005 Asadian, E ; Shahrokhian, S ; Zad, A. I ; Jokar, E ; Sharif University of Technology
    Abstract
    The present paper demonstrates the capability of narrow graphene nanoribbons (GNRs) in constructing new sensing platforms. Graphene nanoribbons have been synthesized via a simple solvothermal route through unzipping of carbon nanotubes, which was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy analysis. These narrow carbon sheets were used to form a composite film by in-situ electro-polymerization with aniline. The produced graphene nanoribbon/polyaniline (GNR/PANI) composite film showed impressive performance in electrochemical determination of dobutamine (DBT). Under optimal conditions, in comparison to... 

    Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime

    , Article Materials Science and Engineering C ; Vol. 34, issue. 1 , 2014 , pp. 318-325 ; ISSN: 09284931 Shahrokhian, S ; Salimian, R ; Rastgar, S ; Sharif University of Technology
    Abstract
    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT,... 

    Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application

    , Article Talanta ; Vol. 119 , 2014 , pp. 156-163 ; ISSN: 00399140 Rastgar, S ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity... 

    Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 1 , 2014 , p. 77-88 Shahrokhian, S ; Hosseini-Nassab, N ; Kamalzadeh, Z ; Sharif University of Technology
    Abstract
    A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01-10.00 μM with a detection limit of... 

    Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode

    , Article International Journal of Chemical Kinetics ; Volume 44, Issue 11 , 2012 , Pages 712-721 ; 05388066 (ISSN) Danaee, I ; Jafarian, M ; Forouzandeh, F ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Nickel-modified glassy carbon electrode (GC/Ni) prepared by galvanostatic deposition was used for the electrocatalytic oxidation of glucose in alkaline solutions where different electrochemical methods were employed. In cyclic voltammetry studies, in the presence of glucose an increase in the peak current of the oxidation of nickel hydroxide is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of glucose is being catalyzed through mediated electron transfer across the nickel hydroxide layer comprising nickel ions of various valence states. Under the chronoamperometric regime, the reaction followed a Cottrellian behavior and the diffusion... 

    A comparative investigation of the electrocatalytic oxidation of methanol on poly-NiTCPP and poly-TCPP/Ni modified glassy carbon electrodes

    , Article Journal of Electroanalytical Chemistry ; Volume 663, Issue 1 , December , 2011 , Pages 14-23 ; 15726657 (ISSN) Jafarian, M ; Haghighatbin, M. A ; Gobal, F ; Mahjani, M. G ; Rayati, S ; Sharif University of Technology
    2011
    Abstract
    Electro-oxidation of methanol in alkaline solution at a glassy carbon electrode electrochemically modified by a conductive polymeric meso-tetra(4-carboxyphenyl)porphyrinato nickel(II), abbreviated as poly-NiTCPP and also meso-tetra(4-carboxyphenyl)porphyrin with incorporated nickel(II) cations, abbreviated as, poly-TCPP/Ni, were investigated and compared. Both films were prepared by oxidative electro-polymerization of complexes by repetitive cyclic voltammetry (RCV) in 0.1 M NaOH aqueous solution. The electrochemical properties and behaviors and also kinetic values of both films have been characterized and compared using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical... 

    Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    , Article Electrochimica Acta ; Volume 55, Issue 11 , 2010 , Pages 3621-3627 ; 00134686 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental... 

    Investigation of the electrochemical behavior of catechol and 4-methylcatechol in the presence of methyl mercapto thiadiazol as a nucleophile: application to electrochemical synthesis

    , Article Journal of Applied Electrochemistry ; Volume 40, Issue 1 , 2010 , Pages 115-122 ; 0021891X (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    Abstract
    The present study concerns the electrochemical behavior of catechol and 4-methylcatechol in the presence of 2-mercapto-5-methyl-1,3,4-thiadiazole (MMT) in aqueous medium on the surface of the glassy carbon electrode by means of cyclic voltammetry and controlled-potential coulometry. The oxidation mechanism was deduced from voltammetric and spectrophotometric data. The electro-generation of quinoid intermediates and their subsequent Michael-type reaction with MMT has been investigated as a clean and convenient strategy for the synthesis of corresponding reaction products. In addition, electro-synthesis of Michael addition products has been successfully accomplished by controlled-potential... 

    Development of a nanocellulose composite based voltammetric sensor for vitamin B9 analysis

    , Article Current Nanoscience ; Volume 12, Issue 4 , 2016 , Pages 493-499 ; 15734137 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Bentham Science Publishers B.V 
    Abstract
    As a B group vitamins, vitamin B9 is a Water-soluble vitamin which is produced by plants and microorganisms (bacteria and yeasts). Vitamin B9 plays an important role in the production of proteins and nucleic acids in body and also is one of the substances that prevents the development of neural tube defects in the fetus. Methods: Electrochemical behavior of vitamin B9 was studied using a potentiostat/galvanostat SAMA 500, electroanalyzer system, I. R. Iran. A three-electrode system was used, including a glassy carbon working electrode (d = 2.0 mm, purchased from Azar Electrode Co., Urmia, I.R. Iran), an Ag/AgCl (saturated KCl) reference electrode and a Pt wire auxiliary electrode.... 

    Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    , Article Materials Science and Engineering C ; Volume 61 , 2016 , Pages 842-850 ; 09284931 (ISSN) Shahrokhian, S ; Naderi, L ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force... 

    Investigation of the electrochemical behavior of tizanidine on the surface of glassy carbon electrode modified with multi-walled carbon nanotube/titan yellow–doped polypyrrole

    , Article Journal of Electroanalytical Chemistry ; Volume 823 , 2018 , Pages 146-154 ; 15726657 (ISSN) Shahrokhian, S ; Shamloofard, M ; Salimian, R ; Sharif University of Technology
    Abstract
    The present paper describes a voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electro-polymerized layer of titan yellow-doped over–oxidized polypyrrole (OPPY) for the determination of tizanidine (TIZ). A significant enhancement was observed in the anodic peak current of TIZ on the surface of OPPY/CNT/GCE, relative to the bare, CNT- and OPPY-coated GCEs. The microscopic structure and surface morphology of the composite film was thoroughly characterized by means of atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. The effect of various... 

    Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing

    , Article Sensors and Actuators, B: Chemical ; Volume 266 , 2018 , Pages 160-169 ; 09254005 (ISSN) Shahrokhian, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Breast Cancer (BRCA) is the most common threat in women worldwide. Increasing death rate of diagnosed cases is the main leading cause of designing specific genosensors for BRCA − related cancer detection. In the present study, an ultrasensitive label − free electrochemical DNA (E − DNA) sensor based on conducting polymer/reduced graphene − oxide platform has been developed for the detection of BRCA1 gene. An electrochemical method was applied as a simple and controllable technique for the electrochemical reduction of graphene oxide and also, electro − polymerization of pyrrole − 3 − carboxylic acid monomer. The results of the present work show that the polymer − coated reduced graphene −... 

    Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode

    , Article International Journal of Hydrogen Energy ; Volume 34, Issue 2 , 2009 , Pages 859-869 ; 03603199 (ISSN) Danaee, I ; Jafarian, M ; Forouzandeh, F ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2009
    Abstract
    The electro-oxidation of methanol on nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the...