Loading...
Search for: glow-discharge
0.007 seconds

    Comparison between decolorization of denim fabrics with Oxygen and Argon glow discharge

    , Article Surface and Coatings Technology ; Volume 201, Issue 9-11 SPEC. ISS , 2007 , Pages 4926-4930 ; 02578972 (ISSN) Ghoranneviss, M ; Shahidi, S ; Moazzenchi, B ; Anvari, A ; Rashidi, A ; Hosseini, H ; Sharif University of Technology
    2007
    Abstract
    In this study, we have used a low temperature plasma, produced by a DC magnetron sputtering device, for decolorizing of denim fabrics, and the effect of using different gases such as Argon and Oxygen as the discharge medium have been investigated. The results obtained under equal periods of time have been compared and the effect of washing on the treated denims has been reported. © 2006 Elsevier B.V. All rights reserved  

    Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: the effect of pulse compression

    , Article Journal of Applied Physics ; Volume 101, Issue 12 , 2007 ; 00218979 (ISSN) Ghorbanzadeh, A. M ; Modarresi, H ; Sharif University of Technology
    2007
    Abstract
    Methane reforming by carbon dioxide in pulsed glow discharge at atmospheric pressure is examined. The plasma pulse is compressed to less than 50 ns. This compression enables one to work at higher frequencies, over 3 kHz, without glow-arc transition. The main products of the reaction are synthetic gases (H2, CO) and C2 hydrocarbons. Approximately 42% of plasma energy goes to the chemical dissociation, when the reactant ratio is C O2 C H4 =1. At this point, the energy expense is less than 3.8 eV per converted molecule while reactant conversions are relatively high reaching to 55% (C H4) and 42% (C O2). The reactor energy performance even gets better at higher C O2 C H4 ratios. While energy... 

    High energy efficiency in syngas and hydrocarbon production from dissociation of CH4-CO2 mixture in a non-equilibrium pulsed plasma

    , Article Journal of Physics D: Applied Physics ; Volume 38, Issue 20 , 2005 , Pages 3804-3811 ; 00223727 (ISSN) Ghorbanzadeh, A. M ; Norouzi, S ; Mohammadi, T ; Sharif University of Technology
    2005
    Abstract
    The efficient production of syngas from a CH4+CO2 mixture in an atmospheric pulsed glow discharge, sustained by corona pre-ionization, has been investigated. The products were mainly syngas (CO, H2) and hydrocarbons up to C4, with acetylene having the highest selectivity. The energy efficiency was within 15-40% for different experimental conditions, which demonstrates a comprehensive improvement relative to the achievements of other types of non-equilibrium plasma. These values are, however, comparable with the efficiencies obtained by gliding arc plasmas but this plasma operates at near room temperature. Furthermore, it has been shown that the energy efficiency is increased by decreasing... 

    Methane conversion to hydrogen and higher hydrocarbons by double pulsed glow discharge

    , Article Plasma Chemistry and Plasma Processing ; Volume 25, Issue 1 , 2005 , Pages 19-29 ; 02724324 (ISSN) Ghorbanzadeh, A. M ; Matin, N. S ; Sharif University of Technology
    2005
    Abstract
    Pulsed atmospheric glow plasma, sustained by corona discharge, was utilized to convert methane. Analysis by gas chromatography showed that hydrogen and C2-products are the main constituents of outlet mixture while C 2+-products with small concentrations were also detected. The chemical energy efficiency turned out to be about 9% for the best result obtained by this type of reactor. It has been shown that more improvement of energy efficiency is possible by increasing ' the pulse repetition rate  

    Investigating Excitation and Geometrical Effects on the Behavior of Cold Plasma

    , M.Sc. Thesis Sharif University of Technology Haghkish, Nima (Author) ; Rashidian, Bijan (Supervisor) ; Faez, Rahim (Supervisor)
    Abstract
    Cold plasma has many applications in micro electronics industry. In this study, several examples of widely used plasmas systems have been investigated. First, the theory and physics of each type of plasma has been studied. Then the applications of each type have been discussed. Finally, the accuracy of the statements has been investigated using COMSOL multi physics software. In 1&2 D simulations the effects of all macroscopic parameters on plasma properties and its behavior have been investigated. In the design of plasma excitation source, plasma impedance is a very important parameter for maximum power transfer. Plasma impedance has been calculated with COMSOL software. Different modes of... 

    Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water

    , Article Nanotechnology ; Volume 19, Issue 19 , 2008 ; 09574484 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Ahadian, M. M ; Mahdavi Ardakani, S. A ; Sharif University of Technology
    2008
    Abstract
    In this paper, we discuss the synthesis and characterization of tungsten trioxide nanoparticles prepared by the arc discharge method in deionized (DI) water. The size and morphology of WO3 nanoparticles prepared using different arc currents (25, 35 and 45 A) were studied. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results indicate that at an arc current of 25 A, the size of the particles is about 30 nm, and this increases to 64 nm by increasing the arc current. This size increase caused a decrease of optical band gap from 2.9 to 2.6 eV. X-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) spectra demonstrate the formation of the WO3 phase.... 

    Comprehensive simulation of the effects of process conditions on plasma enhanced chemical vapor deposition of silicon nitride

    , Article Semiconductor Science and Technology ; Volume 23, Issue 9 , 22 August , 2008 ; 02681242 (ISSN) Bavafa, M ; Ilati, H ; Rashidian, B ; Sharif University of Technology
    2008
    Abstract
    A numerical model for the deposition of silicon nitride using silane and ammonia mixture in a radio frequency plasma reactor has been developed. Plasma enhanced chemical vapor deposition process is simulated by combined analysis for the glow discharge, fluid flow and chemical reactions. The main goal is to investigate the effect of variations of the process parameters on the deposition rate, and uniformity of the resulting layer. The approach used is based on the theoretical partial differential equation models, without any empirical approximation of the critical data being used. Owing to the fact that the relevant equations are highly nonlinear, the discretization method is of great...