Search for: gold-nanoelectrode-ensembles
0.006 seconds

    Highly sensitive 3D gold nanotube ensembles: Application to electrochemical determination of metronidazole

    , Article Electrochimica Acta ; Volume 106 , 2013 , Pages 288-292 ; 00134686 (ISSN) Mollamahale, Y. B ; Ghorbani, M ; Ghalkhani, M ; Vossoughi, M ; Dolati, A ; Sharif University of Technology
    Three-dimensional gold nanoelectrode ensembles (3D GNE) have proven to be promising nanoelectrodes by representing much higher sensitivity compared to both their 2D nanostructures and bulk counterparts. The sensitivity of 3D gold nanotubes (GNTs) fabricated through electrodeposition inside the pores of polycarbonate templates, was examined toward metronidazole (MTZ) as one of their pharmaceutical applications. The electrochemical behavior of MTZ at the 3D GNT-modified electrode was discussed in detail through cyclic voltammetry (CV) which suggested an irreversible reduction of nitro group to the corresponding hydroxylamine and a subsequently reversible redox peak for the corresponding... 

    Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles

    , Article Electrochimica Acta ; Volume 75 , 2012 , Pages 157-163 ; 00134686 (ISSN) Bahari Mollamahalle, Y ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Elsevier  2012
    Electrodeposition of long and well-defined gold nanotubes in polycarbonate (PC) templates is still a major concern due to pore blockage problems. In the present study, we introduce a novel method for electrodeposition of long gold nanotubes within the pores of PC templates for the first time. In order to deposit gold atoms onto the pore walls preferentially, pore walls were functionalized with a coupling agent. Short and thin Ni nanotubes were then electrodeposited at the bottom of the pores. Gold nanotubes were subsequently electrodeposited at constant potentials and low solution concentrations. The morphology of nanotubes was characterized by electron microscopy and their formation...