Loading...
Search for: gradient-based
0.004 seconds
Total 24 records

    Hydrodynamic optimization of marine propeller using gradient and non-gradientbased algorithms

    , Article Acta Polytechnica Hungarica ; Volume 10, Issue 3 , 2013 , Pages 221-237 ; 17858860 (ISSN) Taheri, R ; Mazaheri, K ; Sharif University of Technology
    2013
    Abstract
    Here a propeller design method based on a vortex lattice algorithm is developed, and two gradient-based and non-gradient-based optimization algorithms are implemented to optimize the shape and efficiency of two propellers. For the analysis of the hydrodynamic performance parameters, a vortex lattice method was used by implementing a computer code. In the first problem, one of the Sequential Unconstraint Minimization Techniques (SUMT) is employed to minimize the torque coefficient as an objective function, while keeping the thrust coefficient constant as a constraint. Also, chord distribution is considered as a design variable, namely 11 design variables. In the second problem, a modified... 

    Optimal gaits generation of a 4-legged walking robot

    , Article Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, 23 June 2003 through 25 June 2003 ; Volume 1 , 2003 , Pages 664-668 Alasty, A ; Borujeni, B. S ; Sharif University of Technology
    2003
    Abstract
    A novel Locomotion and gait planning method for a surface walking/climbing robot based on sequential 4-bar mechanism motions is presented. The robot moves on a surface through decoupled transverse gaits and turning gaits with desired length and angle. For implementation of turning gaits three methods of Simulated Annealing Accurate Planning (SAAP), Gradient Based Planning (GBP) and Hybrid Accurate Planning (HAP) are studied. Where the last method was found the most effective approach  

    Efficiency of Spectral Gradient Method in Solving Optimization Problems

    , M.Sc. Thesis Sharif University of Technology Mirzaii, Mohammad (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)
    Abstract
    In a recent paper, Barzilai and Borwein presented a new choice of steplength for the gradient method. Their choice does not guarantee descent in the objective function and greatly speeds up the convergence of the method. Later, Raydan derived an interesting relationship between a gradient method and the shifted power method. This relationship allows one to establish the convergence of the Barzilai and Borwein method when applied to the problem of minimizing any strictly convex quadratic function. With this point of view, he explained the remarkable improvement obtained by using this new choice of steplength. For some special cases, he presented some very interesting convergence rate results.... 

    Development of Optimization Algorithm for Low Speed UAVs Propellers

    , M.Sc. Thesis Sharif University of Technology Miraghaei Jafari, Zahra Sadat (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Aerodynamic shape optimization has been always of great importance in aerospace design. Recent advancements in computational algorithms and hardware, has made it feasible to have advanced optimization as a standard part of desing procedure. Here we have promoted aerodynamic optimization of air propeller.
    Propeller optimization process requires a propeller performance analysis program and an efficient optimization algorithm. A vortex lattice model is used for the propeller performance analysis and a computer program is developed based on it. Experiment and litritures are used for validation of VLM code. In order to optimize the propeller peformance, propeller efficiency is applied as cost... 

    Aerodynamic Optimization of Axial Compressors Using Adjoint Equations

    , M.Sc. Thesis Sharif University of Technology Roueeni, Ali (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    In this study, aerodynamic shape optimization of axial compressors is considered. In order to optimization, one of the gradient based optimization algorithms, namely Adjoint method, is used. Recently, Adjoint method has been emerged as one of the reliable gradient based optimization algorithms in turbomahineries applications. Because this method is a gradient method of optimization, similar to the other entire gradient based algorithms, adjoint method also has a better convergence than non-gradient based optimization algorithms. In this work, aerodynamic shape optimization of two-dimensional cross section through a transonic axial compressor is studied. The process is considered for midspan... 

    Aerodynamic Shape Optimization of Airfoils Using Adjoint Equations

    , M.Sc. Thesis Sharif University of Technology Darvishzadeh, Tohid (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Adjoint-based aerodynamic optimization has drawn much attention, recently. It is based on gradient optimization procedures and requires the sensitivities of the design variables to find the optimized shape. The advantage of this method is that it estimates the sensitivities by solving an “adjoint equation”, instead of calculating them directly. In this thesis, the method is used to design airfoil shapes both in inviscid and viscous flows. In this regard, a flow solver and an adjoint solver have been developed. First, the validity of the flow solver is tested according to credited data form papers and softwares. Then, the optimizing program is tested using some inverse design problems.... 

    Improved initial value prediction for global motion estimation

    , Article European Signal Processing Conference, 23 August 2010 through 27 August 2010, Aalborg ; 2010 , Pages 2022-2026 ; 22195491 (ISSN) Ahmadi, A ; Salehinejad, H ; Talebi, S ; Koroupi, F ; Sharif University of Technology
    2010
    Abstract
    Global motion estimation (GME) algorithms have an imperative role in object-based applications. Gradient-based GME is a well known method among these algorithms. Such algorithms require an initial value for their initialization step. Well estimation of this value plays a significant role in the accuracy of GME. This work introduces a simple but efficient technique for initial value prediction of GME. This technique employs a long-term predictor as well as global motions of previous frames. Simulations results demonstrate faster convergence and less computational complexity of the proposed method versus common presented techniques in the literature with almost same efficiency  

    Optimal control of an aerial tail sitter in transition flight phases

    , Article Journal of Aircraft ; Volume 53, Issue 4 , Volume 53, Issue 4 , 2016 , Pages 914-921 ; 00218669 (ISSN) Banazadeh, A ; Taymourtash, N ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc 
    Abstract
    The main purpose of this study is to generate optimal transition trajectories for an aerial tail sitter that uses cross-coupled thrust-vectoring control. A transition maneuver is most challenging for such configurations due to coupling of the forces and moments with instability in the most critical low-speed flight phases. Based on the classical Cauchy method, an improved gradient-based algorithm is developed in a collaborative process in order to find transition trajectories and increase the convergence rate. The cost function is defined in terms of minimum time in transition from hover to cruise and minimum altitude variations from cruise to hover. In addition, physical constraints are... 

    Multiple-impulse orbital maneuver with limited observation window

    , Article Advances in Space Research ; Volume 66, Issue 4 , 2020 , Pages 992-1000 Shakouri, A ; Pourtakdoust, S. H ; Sayanjali, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper proposes a solution for multiple-impulse orbital maneuvers near circular orbits for special cases where orbital observations are not globally available and the spacecraft is being observed through a limited window from a ground or a space-based station. The current study is particularly useful for small private launching companies with limited access to global observations around the Earth and for orbital maneuvers around other planets for which the orbital observations are limited to the in situ equipment. An appropriate cost function is introduced for the sake of minimizing the total control/impulse effort as well as the orbital uncertainty. It is subsequently proved that for a... 

    Stabilizing chaotic system on periodic orbits using multi-interval and modern optimal control strategies

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 17, Issue 10 , 2012 , Pages 3832-3842 ; 10075704 (ISSN) Abedini, M ; Vatankhah, R ; Assadian, N ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, optimal approaches for controlling chaos is studied. The unstable periodic orbits (UPOs) of chaotic system are selected as desired trajectories, which the optimal control strategy should keep the system states on it. Classical gradient-based optimal control methods as well as modern optimization algorithm Particle Swarm Optimization (PSO) are utilized to force the chaotic system to follow the desired UPOs. For better performance, gradient-based is applied in multi-intervals and the results are promising. The Duffing system is selected for examining the proposed approaches. Multi-interval gradient-based approach can put the states on UPOs very fast and keep tracking UPOs with... 

    Estimation of origin–destination matrices using link counts and partial path data

    , Article Transportation ; Volume 47, Issue 6 , 2020 , Pages 2923-2950 Rostami Nasab, M ; Shafahi, Y ; Sharif University of Technology
    Springer  2020
    Abstract
    After several decades of work by several talented researchers, estimation of the origin–destination matrix using traffic data has remained very challenging. This paper presents a set of innovative methods for estimation of the origin–destination matrix of large-scale networks, using vehicle counts on links, partial path data obtained from an automated vehicle identification system, and combinations of both data. These innovative methods are used to solve three origin–destination matrix estimation models. The first model is an extension of Spiess’s model which uses vehicle count data while the second model is an extension of Jamali’s model and it uses partial path data. The third model is a... 

    Acceleration Convergence of New Gradient-based Aerodynamic Optimization Algorithms

    , M.Sc. Thesis Sharif University of Technology Taheri, Ramin (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Aerodynamic shape optimization has been always of great importance in aerospace design. Recent advancements in computational algorithms and hardware, has made it feasible to have advanced optimization as a standard part of desing procedure. Here we have promoted aerodynamic optimization in three different applications, i. e., wing-body configuration, hydro propellers, and air propellers. First we have reviewed fluidic theoretical aspects, and have selected appropriate physical models or existing softwares. Accuracy of physical analysis or software is validated. Then different optimization algorithms are reviewed, and schemes used in this thesis are described and the softwares are validated. ... 

    A hybrid method of modified cat swarm optimization and gradient descent algorithm for training anfis

    , Article International Journal of Computational Intelligence and Applications ; Volume 12, Issue 2 , June , 2013 ; 14690268 (ISSN) Orouskhani, M ; Mansouri, M ; Orouskhani, Y ; Teshnehlab, M ; Sharif University of Technology
    2013
    Abstract
    This paper introduces a novel approach for tuning the parameters of the adaptive network-based fuzzy inference system (ANFIS). In the commonly used training methods, the antecedent and consequent parameters of ANFIS are trained by gradient-based algorithms and recursive least square method, respectively. In this study, a new swarm-based meta-heuristic optimization algorithm, so-called "Cat Swarm Optimization", is used in order to train the antecedent part parameters and gradient descent algorithm is applied for training the consequent part parameters. Experimental results for prediction of Mackey-Glass model and identification of two nonlinear dynamic systems reveal that the performance of... 

    Turbine blade aerodynamic optimization on unstructured grids using a continuous adjoint method

    , Article ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012, Houston, TX, 9 November 2012 through 15 November 2012 ; Volume 1 , 2012 , Pages 425-431 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    A gradient based optimization using the continuous adjoint method for inverse design of a turbine blade cascade is presented. The advantage of the adjoint method is that the objective function gradients can be evaluated by solving the adjoint equations with coefficients depending on the flow variables. This method is particularly suitable for aerodynamic design optimization for which the number of design variables is large. Bezier polynomials are used to parameterize suction side of the turbine blade. The numerical convective fluxes of both flow and adjoint equations are computed by using a Roe-type approximate Riemann solver. An approximate linearization is applied to simplify the... 

    Energy management through topology optimization of composites microstructure using projected gradient method

    , Article Structural and Multidisciplinary Optimization ; Volume 52, Issue 6 , December , 2015 , Pages 1121-1133 ; 1615147X (ISSN) Homayounfar, S. Z ; Tavakoli, R ; Bagheri, R ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    In this paper the projected gradient method is applied as an effective gradient-based topology optimization algorithm in order to direct energy propagation through the desired region of composites microstructure. Rayleigh Damping model is also used in order to take the effect of internal damping mechanisms into account and thus, to fill in the gap between the designed layouts and those in reality. The success of the proposed algorithm is illustrated through several numerical experiments by revealing a set of various designed optimal layouts besides their corresponding energy distributions  

    Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet

    , Article Applied Thermal Engineering ; Volume 150 , 2019 , Pages 781-790 ; 13594311 (ISSN) Bijarchi, M. A ; Eghtesad, A ; Afshin, H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel 2D laminar Swinging Slot Impinging Jet (SSIJ) on a heated flat surface was investigated using numerical simulation. The impinging jet was introduced to improve the uniform cooling of a hot surface while enhancing the heat transfer rate by disrupting the boundary layer. The impinging jet moves along the target surface similar to the swinging motion of a pendulum. The effects of Reynolds number, dimensionless jet to target distance, maximum angle of swinging, and frequency of jet oscillations were studied, and physics of the new impinging jet were fully discussed. Lastly, optimization was undertaken to search for the optimal variables leading to uniform heat fluxes. A... 

    Aerodynamic Optimization of Transonic Airfoils and Wings by Using Shock Control Bump, Suction and Blowing with Adjoint Method

    , Ph.D. Dissertation Sharif University of Technology Nejati, Ashkan (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Shock control bump (SCB) and suction and blowing are flow control methods used to control the shock wave/boundary layer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. A SCB uses a small local surface deformation to reduce the shock-wave strength, while suction decreases the boundary-layer thickness and blowing delays the flow separation. Here, a single-point, a multi-point, and a robust optimization method are used to find the optimum design of SCB and suction and blowing. The flow control methods are used separately or together on two transonic airfoils i.e.; RAE-2822 and NACA-64A010 for a wide range of off-design transonic Mach numbers. The RANS flow... 

    Second-Order Homogenization of BCC Lattice Structures to Strain-Gradient Continuum with the Aid of Machine Learning

    , M.Sc. Thesis Sharif University of Technology Taghizadeh, Sina (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Engineering of properties was previously not possible. With the advent of additive manufacturing, it became possible to produce structures with architected microstructures, known as lattice structures. The popularity of these structures, due to their lightweight and tunable properties, has increased the importance of their optimal mechanical analysis. Since direct analysis of these structures is computationally prohibitive due to their high level of detail, homogenization methods have been proposed as an alternative. Since these methods couldn't capture size effects, higher-order homogenization methods were introduced. However, despite their good accuracy, these methods are still rarely used... 

    A subsampling-predictor associated approach for fast global motion estimation

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1746-1753 ; 10263098 (ISSN) Ahmadi, A ; Talebi, S ; Salehinejad, H ; Sharif University of Technology
    2012
    Abstract
    Global Motion Estimation (GME) has many important roles in numerous applications, such as video compression, image stabilization, video-object segmentation, and etc. One well-known GME method is the gradient-based technique. This method uses optimization techniques, like the Levenberg-Marquardt algorithm, to minimize estimation error. Such algorithms require an initial value for the initializing step. In this paper, we propose a simple and reliable GME structure with a new predictor. This structure uses a three-step search and a predictor for the initializing step. It is also incorporated with a fast GME method that uses pixel subsampling. This incorporation reduces the computational... 

    A projected gradient-based algorithm to unmix hyperspectral data

    , Article European Signal Processing Conference ; 2012 , Pages 2482-2486 ; 22195491 (ISSN) ; 9781467310680 (ISBN) Zandifar, A ; Babaie Zadeh, M ; Jutten, C ; Sharif University of Technology
    2012
    Abstract
    This paper presents a method to solve hyperspectral unmixing problem based on the well-known linear mixing model. Hyperspectral unmixing is to decompose observed spectrum of a mixed pixel into its constituent spectra and a set of corresponding abundances. We use Nonnegative Matrix Factorization (NMF) to solve the problem in a single step. The proposed method is based on a projected gradient NMF algorithm. Moreover, we modify the NMF algorithm by adding a penalty term to include also the statistical independence of abundances. At the end, the performance of the method is compared to two other algorithms using both real and synthetic data. In these experiments, the algorithm shows interesting...