Loading...
Search for: gravity-drainage-mechanism
0.004 seconds

    Experimental and Modeling Study of Gravity Drainage in Multi-Stack Blocks System

    , M.Sc. Thesis Sharif University of Technology Karimi Malekabadi, Farzan (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Rostami, Behzad (Supervisor) ; Gudarznia, Iraj (Supervisor)
    Abstract
    Gravity drainage is known as one of the major mechanisms of oil recovery in naturally fractured reservoirs which petroleum engineers conducted research in this realm. Block to block interaction such as capillary continuity and reinfiltration mainly control the efficiency of this mechanism. In this study, first of all, free fall and forced gravity drainage experiments have been conducted in a single block apparatus and effect of some parameters like, density viscosity relation, matrix permeability, vertical fracture aperture, presence of viscose force and type of injected gas were investigated, in the second step, three stack block apparatus were designed and constructed. This apparatus were... 

    , M.Sc. Thesis Sharif University of Technology Reza Veisi, Mohsen (Author) ; Ghotbi, Siroos (Supervisor) ; Ayatollahi, Shahabedin (Co-Advisor)
    Abstract
    In water drive or waterflooded reservoirs, a significant amount of oil is remained in the reservoir as the residual oil. A process known as gas assisted gravity drainage, in its tertiary mode, has been applied in a number of conventional reservoirs to recover this residual oil. Gravity drainage is the main mechanism of oil recovery in the gas assisted gravity drainage enhanced oil recovery process. Previous investigations has shown that gravity force, spreading coefficient, three phase capillary pressure and reservoir wettability have significant effect on oil recovered via this process. The feasibility of using such a process in a naturally fractured reservoir is investigated in this work... 

    Pore Scale Modeling of Gravity Drainage in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Mehrizadeh, Masoud (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Most of oil content, especially in Iran, has been reserved in fractured reservoirs, so study and modeling of production mechanism of these reservoirs are great of importance. Gravity drainage is one of these effective production mechanisms in fractured porous media which dynamic pore scale modeling of this mechanism will lead to better understanding of it. In this work, the effects of variety of parameters such as oil gravity, interfacial tension between oil and gas, pore and throat size distribution, fracture aperture, and block to block interaction (capillary continuity and reinfiltartion) have been investigated. So developed simulator in this work has two main and separated parts, which... 

    Modeling the Gravity Drainage during Miscible Gas Injection in Fractured Reservoirs

    , M.Sc. Thesis Sharif University of Technology Rezaei, Hojjat (Author) ; Masihi, Mohsen (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    The production of oil is challenging in the fractured reservoirs due to the large transmissibility contrast between matrix and fracture, and primary recovery is often low. The recovery efficiency depends on the relationship between the fracture and matrix permeability, and is strongly dependent on the wettability of the matrix, which reflects the imbibition potential of the reservoir. Among these parameters the multiphase fluid flow in gas invaded zone is the point of interest in this project. Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing... 

    Experimental Study and Modeling of Scale up in Multi-blocks Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Rostami, Behzad (Supervisor)
    Abstract
    Fractured reservoirs constitute a major portion of world’s petroleum reservoirs. Gravity drainage is the controlling production mechanism in these reservoirs. Thus, investigation of performance and oil production in fractured models has been the subject of many researches. Despite the considerable number of experimental and modeling studies in this area, the method of scale-up in single or multi block models is not broadly investigated. This work is divided into two experimental and modeling sections. For the experimental study, free fall gravity drainage experiments in synthetic single or multi block porous media were performed in order to investigate effects of different parameters... 

    Simulation of Gravity Drainage in Oil Reservoirs Using Black-Oil Model

    , M.Sc. Thesis Sharif University of Technology Moshiri, Mojtaba (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)

    Pore-scale Network Modeling of Gas-Liquid Membrane Contactors for CO2 and H2S Separation

    , M.Sc. Thesis Sharif University of Technology Zolfaghari, Ashkan (Author) ; Moosavi, Abbas (Supervisor) ; Bozorgmehri, Ramin (Supervisor)
    Abstract
    In this study, a tree-dimensional random pore-scale network model is used to simulate the membrane contactor porous medium. Drainage and imbibition phenomena is simulated to have a better knowledge of liquid and/gas intrusion trough the membrane porous structure. A genetic algorithm is used as an optimization tool. Several variables such as the number, radius and location of pores, the coordination number, as well as the radius and length of the throats are used herein as the optimization parameters. The difference between the binary SEM images and virtual sections on the generated network in conjunction with the permeability and mean pore size data were selected as the objective function.... 

    Non-equilibrium Modeling of Oil Recovery by Gravity Drainage in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Jahanbakhshi, Saman (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    In this work a generalized non-equilibrium model of three-phase flow in porous media including gravity as well as capillary terms is developed and used for analysis of Riemann’s problem in several three-phase systems. The proposed model uses the extension of Barenblatt model to three-phase systems considering dynamic effects in both relative permeability and capillary pressure functions. We compare the solution of the Riemann’s problem when non-equilibrium effects are included. While equilibrium formulation develops unstable oscillatory solution in the elliptic region, non-equilibrium solution is smooth and stable. The proposed non-equilibrium model is validated by the experimental data of... 

    Gravity Drainage and Capillary Imbibition in Iranian Fractured Carbonate Reservoirs

    , Ph.D. Dissertation Sharif University of Technology Darvishi, Hamid Reza (Author) ; Goodarznia, Iraj (Supervisor) ; Esmaeilzadeh, Fereidoon (Supervisor) ; kharrat, Riaz (Supervisor)
    Abstract
    Gravity Drainage and Capillary Imbibition are among the most important mechanisms in oil production from carbonate fractured reservoirs. In order to investigate the feasibility and effects of these mechanisms in oil recovery from carbonate cores, some different experiments were carried out at Sharif University Laboratories. Carbonate cores were taken away from the well-known Asmari outcrop, Asmari Mountain in south east of M.I.S. city and used in these experiments. Oil and gas samples were collected from field separators and recombined to reservoir composition. The Gas-Oil ratio was adjusted to obtain the reservoir fluid properties. A core flooding apparatus with various capabilities was... 

    Modeling of Gravity Drainage in Fractured Porous Media using CFD based Software and Verification by Experimental Results

    , M.Sc. Thesis Sharif University of Technology Saedi, Benyamin (Author) ; Ayatollahi, Shahabodden (Supervisor) ; Masihi, Mohsen (Co-Advisor)
    Abstract
    Gravity drainage is known as the main mechanism for Enhanced Oil Recovery (EOR) in naturally fractured reservoirs. In fact, this mechanism is active in gas invaded zone. In spite of numerous researches in the area, the literature suffers from the lack of a comprehensive model for controlled gravity drainage. Calculating the accurate oil recovery and ultimate recovery factor is inevitable for a successful field development plan as well as enhancing oil recovery. To obtain the accurate values of the aforementioned parameters, an accurate model to solve nonlinear differential equations is necessary. To this end, COMSOL, the well known commercial CFD software, has been used for the modeling of... 

    Experimental Study and Mathematical Modeling of Traveling Liquid Bridges in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Dahim, Sadegh (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Liquid flow between two porous blocks in fractured reservoirs can occur through capillary continuity or re-imbibition. Studies have shown that capillary continuity via liquid bridges formed in horizontal fracture increases oil recovery from reservoirs. The critical fracture apertures for stability of liquid bridges, shape of curvature and fracture capillary pressure for prediction of fractured reservoir performance remain as controversial topics. Experimental results have shown that critical fracture aperture is a function of surface wettability and critical Bond number. Capillary pressure of fracture might be a positive or negative value caused by liquid bridges. The best method for... 

    Evaluation of Liquid Bridge Behavior in the Presence of Flow Inside Fracture by Study of Viscosity, Fracture Width, Flow Rate, Wettability, and their Role on Fracture Capillary Pressure

    , M.Sc. Thesis Sharif University of Technology Farahani, Amir Ali (Author) ; Masihi, Mohsen (Supervisor)
    Abstract
    In fractured reservoirs under the gravity mechanism, the oil transfer between the matrix blocks is affected by mechanisms such as capillary continuity or re-imbibition. Capillary continuity between adjacent matrix blocks can be created by formation of liquid bridges, or physical contact of surfaces due to the roughness of the fracture wall surface.Since the presence of liquid bridges can be effective in creating capillary continuity and therefore the amount of oil production, the study of the presence of liquid bridges between matrix blocks and how they change in terms of volume and shape in the process of oil and gas movement is of particular importance. Although there are studies on the... 

    Factors affecting the gravity drainage mechanism from a single matrix block in naturally fractured reservoirs

    , Article Special Topics and Reviews in Porous Media ; Volume 2, Issue 2 , 2011 , Pages 115-124 ; 21514798 (ISSN) Dejam, M ; Ghazanfari, M. H ; Mashayekhizadeh, V ; Kamyab, M ; Sharif University of Technology
    2011
    Abstract
    Despite numerous experimental and numerical studies, fundamental understanding of how the matrix block height, the density difference between petroleum and gas, and matrix capillary pressure could affect the oil recovery from a single matrix block in naturally fractured reservoirs remains a topic of debate in the literature. In this work a one-dimensional gravity drainage model developed by Firoozabadi and Ishimoto (1994) is considered and numerically solved. The Fourier series method is applied for a numerical Laplace inversion of the dimensionless mathematical model; this type of inversion method has rarely been used in petroleum applications. The obtained results revealed that by...