Loading...
Search for: grid-power
0.007 seconds

    A reliability model for overcurrent relays considering harmonic-related malfunctions

    , Article International Journal of Electrical Power and Energy Systems ; Volume 131 , 2021 ; 01420615 (ISSN) Farzin, H ; Monadi, M ; Fotuhi Firuzabad, M ; Savaghebi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The number of harmonic-producing sources is rapidly growing in the power grid due to the increased penetration of power electronic-interfaced resources (such as wind turbines, photovoltaic systems, and energy storage units) and proliferation of nonlinear loads. Many researchers have investigated the effects of non-sinusoidal waveforms on the performance of different types of protective relays, and have reported some harmonic-related malfunctions. This paper presents a detailed Markov model that captures different impacts of harmonics on the reliability of overcurrent relays. In addition to addressing relevant considerations of the previous reliability models, this model accounts for new... 

    A new power management control strategy for a MV microgrid with both synchronous generator and inverter-interfaced distributed energy resources

    , Article IEEE International Symposium on Industrial Electronics ; 1- 4 June , 2014 , pp. 2529-2534 ; ISBN: 978-147992399-1 Zangeneh, M ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    Abstract
    Control strategies of a microgrid which includes both synchronous generators and converter-based distribution generation (DG) units must be designed such that effective operation of the microgrid is achieved. The main objective of this paper is to develop a high performance control strategy for an islanded medium voltage (MV) microgrid consisting of inverter and non-inverter interfaced DG units. A new control method for the synchronous generator in an islanded microgrid is proposed based on a virtual droop scheme. The proposed strategy can effectively manage the real and reactive powers of the microgrid among the inverter and non-inverter based DG units. The steady state and dynamic... 

    Power management strategy for a multi-hybrid fuel cell/energy storage power generation systems

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 354-359 ; 9781467301114 (ISBN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper depicts a new configuration for modular hybrid power conversion systems, namely, multi-hybrid generation system (MHGS), and parallel connection at the output, such that the converter of each unit shares the load current equally. This is a significant step towards realizing a modular power conversion system architecture, where smaller units can be connected in any series/parallel grouping to realize any required unit specifications. The supercapacitor (SC) as a complementary source is used to compensate for the slow transient response of the fuel cell (FC) as a main power source. It assists the FC to meet the grid power demand in order to achieve a better performance and dynamic... 

    Investigating the impacts of microgrids and gas grid interconnection on power grid flexibility

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Kamrani, F ; Fattaheian Dehkordi, S ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The introduction of microgrids (MGs) and renewable energy sources (RESs) has caused significant shifts in the operation of power systems. Despite many benefits, integration of RESs has emerged new issues in the power systems operation. One of the issues recently raised by some utilities, is the severe ramps which are seen in systems with high penetration of RES. On the other hand, the traditional flexible power plants could not provide the ramp required in these systems. As a result, flexible local resources in independent entities like MGs should be employed to tackle this issue in these systems. In this paper, a novel model is developed to investigate the effects of MGs and gas grid... 

    Operation of networked multi-carrier microgrid considering demand response

    , Article COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering ; Volume 38, Issue 2 , 2019 , Pages 724-744 ; 03321649 (ISSN) Amir, V ; Jadid, S ; Ehsan, M ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: Microgrids are inclined to use renewable energy resources within the availability limits. In conventional studies, energy interchange among microgrids was not considered because of one-directional power flows. Hence, this paper aims to study the optimal day-ahead energy scheduling of a centralized networked multi-carrier microgrid (NMCMG). The energy scheduling faces new challenges by inclusion of responsive loads, integration of renewable sources (wind and solar) and interaction of multi-carrier microgrids (MCMGs). Design/methodology/approach: The optimization model is formulated as a mixed integer nonlinear programing and is solved using GAMS software. Numerical simulations are... 

    Utilization of in-pipe hydropower renewable energy technology and energy storage systems in mountainous distribution networks

    , Article Renewable Energy ; Volume 172 , 2021 , Pages 789-801 ; 09601481 (ISSN) Saber, H ; Mazaheri, H ; Ranjbar, H ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Million miles of gravity-fed drinking water and sewage pipelines around the world, especially in rural and urban areas in mountain ranges, have introduced a new renewable energy sources (RES), i.e., in-pipe hydropower systems (IHS). Output power of this technology, similar to other types of RES, suffers from intermittency, while it is still more predictable in comparison to other technologies of RESs. Besides, energy storage systems (ESS) are introduced as a pivotal technology for dealing with the intermittent and non-dispatchable characteristics of IHS through spatio-temporal arbitrage. This paper aims to develop a stochastic mixed-integer linear programming (MILP) formulation that... 

    Post Optimal Analysis application on the reliability evaluation of the Iran power grid

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012 - Conference Proceedings ; 2012 , p. 873-878 ; ISBN: 9781460000000 Safdarian, A ; Fotuhi-Firuzabad, M ; Sharif University of Technology
    Abstract
    Access to a computational tractable method for representing the system more realistically has always been an important issue in power system reliability assessment. The Post Optimal Analysis (POA), as a well recognized technique to attack a set of similar optimization problems, has been successfully used to assess the reliability of composite systems. This method exploits the similarity of the system states to speed up the contingency evaluation procedure without sacrificing the accuracy of the results. In this paper, the performance and practical feasibility of the POA technique for power system reliability evaluation is tested using the Iran power grid. The POA based approach is applicable... 

    Post Optimal Analysis application on the reliability evaluation of the Iran power grid

    , Article EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ference on Environment and Electrical Engineering, EE ; 2012 , Pages 873-878 ; 9781457718281 (ISBN) Safdarian, A ; Fotuhi-Firuzabad, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Access to a computational tractable method for representing the system more realistically has always been an important issue in power system reliability assessment. The Post Optimal Analysis (POA), as a well recognized technique to attack a set of similar optimization problems, has been successfully used to assess the reliability of composite systems. This method exploits the similarity of the system states to speed up the contingency evaluation procedure without sacrificing the accuracy of the results. In this paper, the performance and practical feasibility of the POA technique for power system reliability evaluation is tested using the Iran power grid. The POA based approach is applicable... 

    Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , 2012 , Pages 1903-1910 ; 19493053 (ISSN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a hierarchical active power management strategy for a medium voltage (MV) islanded microgrid including a multihybrid power conversion system (MHPCS). To guarantee excellent power management, a modular power conversion system is realized by parallel connection of small MHPCS units. The hybrid system includes fuel cells (FC) as main and supercapacitors (SC) as complementary power sources. The SC energy storage compensates the slow transient response of the FC stack and supports the FC to meet the grid power demand. The proposed control strategy of the MHPCS comprises three control loops; dc-link voltage controller, power management controller, and load current sharing...