Loading...
Search for: grinding--machining
0.007 seconds

    Ultrasonic-assisted cylindrical grinding of Alumina-zirconia ceramics

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 A , Volume 2 A , 2013 ; 9780791856185 (ISBN) Tawakoli, T ; Akbari, J ; Zahedi, A. M ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Due to its vast applications and stochastic nature, grinding has been the subject of investigations and modifications for decades. Applying ultrasonic vibration in grinding has been a successful innovation introducing benefits such as reduced forces and temperature, improved surface quality, and making higher removal rates possible. In this work a set-up is developed for utilizing ultrasonic vibrations in cylindrical grinding. This is done by rotating and simultaneously vibrating the workpiece material. The set-up is used for cylindrical grinding of Alumina-zirconia ceramic as a difficult-to-grind and widely used industrial ceramic. Optimized parameters for efficient grinding and surface... 

    Study the influence of ultrasonic vibration on grinding of Ti6Al4V

    , Article Proceedings of the 6th International Conference on Leading Edge Manufacturing in 21st Century, LEM 2011, 8 November 2011 through 10 November 2011 ; Novembe , 2011 Ghahramani Nick, M ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2011
    Abstract
    Titanium alloys, in particular Ti6Al4V, are increasingly used recently due to high strength-to-weight ratio, biocompatibility and robust mechanical-properties at high temperatures. However, Ti6Al4V have poor machinability because of their poor thermal conductivity and high reactivity. Usually in conventional grinding (CG) of these alloys, surface burning is unavoidable. Ultrasonic assisted grinding (UAG) is an efficient method for overcoming the poor machinability of such materials. In this research, effect of imposed vibration on grinding of Ti6Al4V is studied. Obtained results show forces and surface roughness are reduced 18% and 12% by UAG comparing to CG respectively. It also results in... 

    Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics

    , Article International Journal of Machine Tools and Manufacture ; Volume 90 , 2015 , Pages 16-28 ; 08906955 (ISSN) Zahedi, A ; Tawakoli, T ; Akbari, J ; Sharif University of Technology
    Abstract
    Ultrasonic assisted grinding is a novel method for improving the grinding process of difficult-to-cut materials. In the present research a novel setup has been designed and manufactured for utilizing ultrasonic vibrations in external cylindrical grinding. The designed ultrasonic head vibrates a rotating workpiece in axial direction. An alumina-zirconia ceramic (AZ90) has been selected as the workpiece material. Energy aspects and workpiece surface characteristics of ultrasonic assisted cylindrical grinding (UACG) and conventional cylindrical grinding (CG) processes have been analytically modeled and corresponding grinding experiments have been performed. The combined kinematics of the... 

    A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening

    , Article Materials and Design ; Volume 90 , 2016 , Pages 478-487 ; 02641275 (ISSN) Mahmoudi, A. H ; Ghasemi, A ; Farrahi, G. H ; Sherafatnia, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Shot peening is one of the most effective surface strengthening treatment technologies in which compressive residual stresses are induced beneath the specimen surface. Effects of various factors on the distribution of residual stress profile induced by shot peening have been investigated by many researchers. However, initial residual stresses are one of the important factors which affect the shot peening residual stress.This study is aimed to present comprehensive numerical and experimental study on the effect of initial residual stresses on the shot peened specimen. Initial residual stresses were induced using a four-point bending rig and grinding. Incremental center hole drilling (ICHD)... 

    Effect of moisture on energy-size reduction of lignite coal in Hardgrove mill

    , Article Fuel ; Volume 270 , 2020 Yang, Y ; He, Y ; Bi, X ; Grace, J. R ; Wang, H ; Fotovat, F ; Xie, W ; Wang, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The effect of moisture on Shengli lignite breakage behavior and energy efficiency was studied experimentally using a standard Hardgrove mill fitted with a wattmeter. The grinding process concerned both the inputs, namely the occurrence and content of water and instantaneous energy consumption and the outputs, size-reduction and product fineness. Results show that the energy-size reduction process for grinding lignite is markedly influenced by moisture occurrence and content. Removing surface moisture from 37.90% to 16.61% (the air-dried condition) resulted in a slight increase of input energy by 0.04 kWh.t−1 per 10 s. However, with further drying inherent moisture to 0%, the consumed energy... 

    Conditioning of Vitrified Bond CBN grinding wheels using a picosecond laser

    , Article Advanced Materials Research ; Vol. 1017, issue , 2014 , p. 573-579 Zahedi, A ; Tawakoli, T ; Akbari, J ; Azarhoushang, B ; Sharif University of Technology
    Abstract
    Laser ablation is a novel non-mechanical wheel preparation method for optimizing the treatment costs of superabrasive tools. In this study the thermal effects of picosecond laser radiation on CBN superabrasive grinding wheel surface is analytically and experimentally investigated. The analytical approach is intended to find threshold process parameters for selective ablation of cutting grains and bond material. It has been analytically and experimentally shown that, the extent of material degradation is defined by the maximum surface temperature induced by the laser radiation which is in turn defined by the laser beam energy. It is also suggested that, the depth of laser thermal effects is... 

    Ultrasonic-assisted grinding of Ti6Al4V alloy

    , Article Procedia CIRP ; Volume 1, Issue 1 , 2012 , Pages 353-358 ; 22128271 (ISSN) Nik, M. G ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In conventional grinding of hard to cut materials such as Ti6Al4V alloys, surface burning, redeposition and adhesion of chips to the grinding wheel and workpeice occur visibly unless it is carried out at low speeds and with high volume of cutting fluid. Ultrasonic assisted grinding is an efficient machining process which improves the machinability of hard-to-cut materials by changing the kinematics of the process. In this research, the effect of imposition of ultrasonic vibration on the grinding of Ti6Al4V alloy is studied. Longitudinal vibration at ultrasonic frequency range (20 kHz) is applied on the workpiece and machining forces and surface roughness are compared between conventional... 

    FEM analysis of single grit chip formation in creep-feed grinding of Inconel 718 superalloy

    , Article Advanced Materials Research, 18 September 2011 through 21 September 2011, Stuttgart ; Volume 325 , 2011 , Pages 128-133 ; 10226680 (ISSN) ; 9783037852316 (ISBN) Zahedi, A ; Akbari, J ; Sharif University of Technology
    2011
    Abstract
    Recent advances in materials science have necessitated the development and understanding of manufacturing processes for safe and repeatable utilization. Grinding is shown to be a promising material removal process especially for brittle and hard to cut materials such as superalloys. Grinding has always been associated with analysis and modeling complications regarding its nature which has limited its extension and reliability of use. The first step in analysis of grinding is considering the action of a single abrasive grit on workpiece surface. In this work the action of a single CBN abrasive grit in creep-feed grinding process of Inconel 718 superalloy is modeled and analyzed using a 3D FEM... 

    On the temperature and residual stress field during grinding

    , Article WCE 2010 - World Congress on Engineering 2010, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1196-1200 ; 9789881821072 (ISBN) H-Gangaraj, S. M ; Farrahi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    Abstract
    Grinding is widely used for manufacturing of components that require fine surface finish and good dimensional accuracy. In this study a thermo-mechanical finite element analysis is conducted to find out how grinding parameters can affect temperature and residual stress distribution in the workpiece. Results of parametric study presented in this work indicate, by carefully selecting the grinding parameters, minimum thermal and mechanical damage can be achieved. Higher workpiece velocities produce higher surface residual stress. By increasing depths of cut, depth of tensile residual stresses increases. Convection heat coefficient does not have any considerable effect on surface residual stress... 

    Solid state and liquid phase sintering of mechanically activated W-20 wt.% Cu powder mixture

    , Article Journal of Alloys and Compounds ; Volume 463, Issue 1-2 , 8 September , 2008 , Pages 153-159 ; 09258388 (ISSN) Maneshian, M. H ; Simchi, A ; Sharif University of Technology
    2008
    Abstract
    W-20 wt.% Cu powder mixture was mechanically alloyed by high-energy ball milling for various times and the effect of mechanical alloying (MA) on the sintering response of the composite compacts was investigated. The densification, microstructure, hardness and electrical conductivity after solid phase sintering (SPS) and liquid phase sintering (LPS) were examined. It was shown that the microstructure of mechanically alloyed powder profoundly influence the sintering response, i.e. a meaningful relationship between the sintering kinetics and the milling time was observed. It is suggested that MA disintegrates the W-W particle networks and increases the contribution of solid phase sintering...