Loading...

**Search for:**hard-sphere-fluids

0.008 seconds

#### A simple method of generating equations of state for hard sphere fluid

, Article Chemical Physics ; Volume 333, Issue 2-3 , 2007 , Pages 208-213 ; 03010104 (ISSN) ; Parsafar, G. A ; Sharif University of Technology
2007

Abstract

We present in this paper a simple method of obtaining various equations of state for hard sphere fluid in a simple unifying way. Using the first several virial coefficients of hard sphere fluid, we will guess equations of state by using the asymptotic expansion method. Among the equations of state obtained in this way are Percus-Yevick, Scaled Particle Theory, and Carnahan-Starling equations of state. Also by combining the Monte Carlo results on hard sphere fluid with the asymptotic expansion method many other equations of state for hard sphere fluid can be found where all of them give essentially similar results in the region of isotropic hard sphere liquid, i.e., up to η < 0.5, in which η...

#### A new analytical expression for the free energy of hard-core fluids

, Article Journal of the Physical Society of Japan ; Volume 72, Issue 11 , 2003 , Pages 2747-2753 ; 00319015 (ISSN) ; Parsafar, G ; Sharif University of Technology
2003

Abstract

A new potential function, which can in a simple and reasonable manner represent the molecular interaction of many kinds of hard-core fluids by varying the value of its parameter, is proposed. For prediction of thermodynamic properties of hard-core fluids such as the square-well (SW) and hard core Lennard-Jones (HCLJ), a simple perturbed equation of state (EOS) is derived by using the new potential function along with the Barker-Henderson perturbation theory. This method yields a simple and general analytical expression for each thermodynamic property of such fluids. The most important feature of these expressions is that they have no adjustable parameter and in some regions in which there is...

#### Equation of State for Dense Systems of Light Molecules in Fluid and Solid States

, M.Sc. Thesis Sharif University of Technology ; Parsafar, Gholam Abbas (Supervisor)
Abstract

A general regularity has been found based on an effective pair potential of Lennard-Jones LJ (12, 6) for both dense nonmetallic and nonionic fluids and solids; namely, (Z-1)V2 linearly varies with respect to ρ2, this equation of state (EoS I) is known as LIR. The other equation of state (EoS II), according to wich the isotherm of (Z-1)V2 is linear in term of 1/ρ, wich gives a good description for the metallic and ionic fluids and solids. This equation of state was suggested based on an effective pair potential of LJ (6, 3). Unexpectedly, solid and liquid Ne indicates a significant deviations from EoS I. Recently, a general equation of state (EoS III) based on an effective near-neighbor pair...

#### Influence of quantum effect on deviation from linear isotherm regularity

, Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 555-560 ; 10263098 (ISSN) ; Parsafar, G. A ; Sharif University of Technology
2012

Abstract

A general regularity was found based on an effective pair potential of Lennard-Jones LJ (12, 6), for both dense, nonmetallic and nonionic fluids and solids according to which (Z-1) v2 linearly varies with respect to ρ2 for each isotherm, and this equation of state (EoS I) is known as LIR. However, despite the fact that Ne is a simple spherical species, unexpectedly, its solid and liquid phases both show a significant deviation from EoS I. In this work, we have investigated the accuracy of the EoS I for other systems, including quantum light molecules, such as D 2, H 2 and He, in both fluid and solid states at different temperatures. Like Ne, we have noticed that these systems do not well...