Loading...
Search for: hardness-values
0.005 seconds

    Prediction of the mechanical properties of rods after cold forging and heat treatment

    , Article International Journal of Advanced Manufacturing Technology ; Volume 69, Issue 9-12 , December , 2013 , Pages 2071-2079 ; 02683768 (ISSN) Kazeminezhad, M ; Sharif University of Technology
    2013
    Abstract
    A hybrid algorithm based on the finite element method, Monte Carlo model, and Hall-Petch relationship is utilized to predict the mechanical properties of the rods after cold forging at different degrees of deformations and heat treatments at different temperatures and times. The results show that the flow stress and hardness of the rods after forging and those of the forged rods after the heat treatments are decreased from their center to surface. However, with increasing the temperature and time of the heat treatment the flow stress and hardness are decreased, their effects are not considerable. In addition, the distribution of the mechanical properties of the forged rods after the heat... 

    Microstructure and mechanical properties in dissimilar butt friction stir welding of severely plastic deformed aluminum AA 1050 and commercially pure copper sheets

    , Article Journal of Materials Science and Technology ; Vol. 30, issue. 8 , 2014 , p. 826-834 Barekatain, H ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this study, AA 1050 aluminum alloy and commercially pure copper in annealed and severely plastic deformed conditions were used. The technique used for imposing the severe strain to the sheets was constrained groove pressing (CGP) process. The annealed and severely plastic deformed sheets were subjected to friction stir welding (FSW) at different rotation and traverse speeds. Cu was placed in advancing side. Constant offset of approximately 1 mm was used toward Al side for all welds. A range of welding parameters which can lead to acceptable welds with appropriate mechanical properties was found. For the FSWed CGPed samples, it was observed that the welding heat input caused grain growth... 

    Butt joining of Al-Cu bilayer sheet through friction stir welding

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 22, Issue 12 , 2012 , Pages 2925-2929 ; 10036326 (ISSN) Beygi, R ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    2012
    Abstract
    Butt joining of Al-Cu bilayer sheet produced by cold roll bonding was studied through friction stir welding (FSW). A defect free joint was obtained. Flow patterns and mixing of two layers during FSW were investigated. Microstructural investigations and hardness profile measurements were carried out. It is shown that material flow in stir zone leads to the formation of banding structure in Cu layer at advancing side. Traces of Al particles along with Al-Cu intermetallic compounds exist in the fined grain region of this banding structure which leads to higher hardness values  

    Effect of austempering parameters on microstructure and mechanical properties of heavy section Machinable Austempered Ductile Cast Iron (MADI)

    , Article Materials Research Express ; Volume 6, Issue 6 , 2019 ; 20531591 (ISSN) Ghoroghi, M ; Varahram, N ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    The first important limitation of ADI usage in industries is the machinability of the parts. Machinable Austempered Ductile Cast Iron (MADI) is a novel kind of ADI with improved properties such as better machinability compared to ADI and similar to as cast ductile iron. Furthermore, MADI has a higher strength than ductile iron at the same hardness value. The present work aimed to investigate into the impact of the austempering time and temperature on microstructure and mechanical properties of ductile iron samples prepared from Y-block with 75 mm thickness. In order to achieve the microstructure of the continuous matrix of equiaxed ferrite with islands of austenite, samples were partially... 

    Annealing behavior of aluminum after low-temperature severe plastic deformation

    , Article Materials Science and Engineering A ; Volume 824 , 2021 ; 09215093 (ISSN) Alyani, A ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Severe plastic deformation (SPD) processes have received less attention at low temperatures (sub-zero and cryogenics). Hence, in this study, SPD of a commercially pure aluminum (AA1050) through Multi-Directional Forging (MDF) at Low-Temperature (LTMDF) and Room-Temperature (RTMDF) is investigated for different strains. Multi-directionally forged (MDFed) samples were annealed at 150, 250, 350, and 450 °C for 1 h, and some samples were stored at room temperature for periods up to 1 year. Results show that the hardness values and flow stress of LTMDFed aluminum are higher than those of RTMDFed ones. The ratio of yield strength to hardness for LTMDF is similar to that for RTMDF. Surprisingly,... 

    Aging behaviors of Al 6061 and Al 6061/ SiCp composite

    , Article Advanced Materials Research ; Volume 410 , 2012 , Pages 240-244 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Ourang, S. M. R ; Ekrami, A ; Seyed Reihani, S. M ; Mousavi Abarghouie, S. M. R ; Sharif University of Technology
    2012
    Abstract
    In the present research the aging behavior of Al6061 alloy and Al6061/SiCp composite fabricated by powder metallurgy method was investigated. The solution treatment of the samples were carried out at 527°C for 2, 3and 4 h followed by aging at 180°C for different aging times between 1 and 10 h. The existence of SiC particles led to increasing the peak hardness of the composite. The peak hardness of the composite took place at shorter times than that of the 6061 alloy for the samples solution treated for 3and 4 h, but took place at longer times for the samples solution treated for 2 h. The optimum solution treating time was about 3 h for both the composite and the 6061 alloy that led to the... 

    Aging behavior of a 2024 Al alloy-SiCp composite

    , Article Materials and Design ; Volume 31, Issue 5 , May , 2010 , Pages 2368-2374 ; 02641275 (ISSN) Mousavi Abarghouie, S. M. R ; Seyed Reihani, S.M ; Sharif University of Technology
    2010
    Abstract
    In the present research work the 2024 aluminum alloy was reinforced with SiC particles via powder metallurgy method. The effect of heat treatment conditions on artificial aging kinetics was investigated. The solution treatment of the composite sample and the unreinforced alloy was carried out at 495 °C for 1, 2 and 3 h followed by aging at 191 °C for various aging times between 1 and 10 h. The existence of SiC particles led to increasing the peak hardness of the alloy. The peak hardness of the composite sample took place at shorter times than that of the unreinforced alloy for the samples solution treated for 2 and 3 h, but took place at longer times for the samples solution treated for 1 h.... 

    Microstructural evolution and Bio-corrosion behavior of a CP-Ti processed by multi-pass of severe plastic deformation

    , Article JOM ; Volume 74, Issue 12 , 2022 , Pages 4621-4631 ; 10474838 (ISSN) Vakili Azghandi, M ; Famil Hatami, M ; Hoseini Sabzevari, S. A ; Moosavi Nezhad, S. M ; Mandanipour, V ; Szpunar, J. A ; Sharif University of Technology
    Springer  2022
    Abstract
    The microstructure evaluation and phase transformation of multi-pass friction stir-processed (FSP) commercially pure titanium were investigated using optical microscopy, scanning electron microscopy equipped with a backscatter detector, and electron backscatter diffractometer. The microstructure characterization shows that the grain refinement mechanism changed with the increasing number of passes. The equiaxed α grains in the untreated sample changed to lath-shaped grains surrounded by serrated grain boundaries, and produced Widmanstätten morphology during the cooling cycle of FSP. The higher micro-hardness values and bio-corrosion resistances of the FSP-treated samples are due to their... 

    Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking

    , Article Materials Science and Engineering A ; Volume 507, Issue 1-2 , 2009 , Pages 167-173 ; 09215093 (ISSN) Beidokhti, B ; Dolati, A ; Koukabi, A. H ; Sharif University of Technology
    2009
    Abstract
    Hydrogen-induced cracking (HIC) and sulfide stress cracking (SSC) susceptibility of the submerged arc welded API 5L-X70 pipeline steel with different amounts of titanium at two levels of manganese (1.4% and 2%) were studied. The centerline segregation region (CSR) observed in the X70 pipe steel played an important role in the HIC susceptibility. Increased acicular ferrite content in the microstructure improved HIC resistance and SSC resistance, while bainite and martensite/austenite constituents deteriorated the workability of the welded specimens in sour environments. The 2% Mn-series welds showed higher SSC susceptibility than the 1.4% Mn-series welds due to the higher hardness values of... 

    Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel

    , Article Journal of Materials Processing Technology ; Volume 211, Issue 3 , 2011 , Pages 368-375 ; 09240136 (ISSN) Moeinifar, S ; Kokabi, A. H ; Hosseini, H. R. M ; Sharif University of Technology
    Abstract
    The influence of thermal cycles on the properties of the coarse grained heat affected zone in X80 microalloyed steel has been investigated. The thermal simulated involved heating the X80 steel specimens to the peak temperature of 1400 °C, with different cooling rates. The four-wire tandem submerged arc welding process, with different heat input values, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between the bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat...