Loading...
Search for: harmonic-inversions
0.008 seconds

    Revised guided mode expansion on dispersive photonic media

    , Article Photonic and Phononic Crystal Materials and Devices IX, San Jose, CA, 27 January 2009 through 29 January 2009 ; Volume 7223 , 2009 ; 0277786X (ISSN) Eftekharian, A ; Sodagar, M ; Khoshnegar, M ; Khorasani, S ; Chamanzar, M. R ; Adibi, A ; Sharif University of Technology
    2009
    Abstract
    A novel plane-wave-based approach for analytical treatment of dispersive relation is developed and applied to analyze the behavior of electromagnetic waves in plasmonic-photonic-crystal slabs. Here Drude model is used for describing frequency dependent permittivity of plasma rods in host dielectric medium. In the present work, dispersion relation below and above the light line is calculated approximately by means of Maxwell-Garnett effective medium and Revised Plane Wave Method (RPWM). The eigen-functions are then used in Revised Guided Mode Expansion (RGME) as the set of orthonormal bases. Following this procedure, the accurate band structure is obtained. In these kind of methods there are... 

    Coupled plasmonic quantum bits

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 24 January 2010 through 28 January 2010 ; Volume 7608 , January , 2010 ; 0277786X (ISSN) ; 9780819480040 (ISBN) Eftekharian, A ; Sodagar, M ; Khoshnegar, M ; Khorasani, S ; Adibi, A ; Sharif University of Technology
    2010
    Abstract
    In this paper we introduce a coupled system of two quantum bits residing at the interface of a heterostructure device. The structure encompasses a reference quantum bit, a photonic/plasmonic crystal waveguide and an obedient quantum bit. Each quantum bit is an electronic device which is designed based on an anti-dot lattice of two-dimensional electron gas in heterostructures. By applying a potential gate in the aforementioned structure it is possible to control electronic tunneling rate and hence quantum bits' swapping frequency. Coupling through the plasmonic waveguide may be employed to entangle quantum bits. The waveguide has been designed by exploiting conducting islands of...