Loading...
Search for: headspaces
0.009 seconds
Total 21 records

    A 3D nanoscale polyhedral oligomeric silsesquioxanes network for microextraction of polycyclic aromatic hydrocarbons

    , Article Microchimica Acta ; Volume 185, Issue 9 , 2018 ; 00263672 (ISSN) Bagheri, H ; Soofi, G ; Javanmardi, H ; Karimi, M ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Polyhedral oligomeric silsesquioxanes are 3D nanoscaled materials with large potential in solid phase microextraction (SPME). Here, as a case study, an octaglycidyldimethylsilyl modified polyhedral oligomeric silsesquioxane network is described. It was deposited on a stainless steel wire via a sol–gel method and used as a fiber coating for SPME of aromatic compounds. The uniform pore structure, high surface area, and hydrophobicity of the network make it susceptible toward isolation of non-polar and semi-polar chemical compounds. The performance of the fiber coating was tested with three classes of environmental pollutants, viz. chlorobenzenes (CBs), benzenes (benzene, toluene, ethylbenzene,... 

    A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols

    , Article Microchimica Acta ; Volume 184, Issue 7 , 2017 , Pages 2201-2209 ; 00263672 (ISSN) Bagheri, H ; Manouchehri, M ; Allahdadlalouni, M ; Sharif University of Technology
    Springer-Verlag Wien  2017
    Abstract
    A polyamidoamine dendrimer was synthesized, placed on magnetite nanoparticles, and the resulting material was then employed as a fiber coating for use in solid phase microextraction of chlorophenols. The polyamidoamine was expected to be an efficient extracting medium due to the presence of multipolar groups and its inner porosity. A thin stainless steel wire was coated with the dendritic polyamidoamine polymer via electrolysis and chemical reactions. The coated fiber was investigated in terms of headspace solid phase microextraction of chlorophenols from aqueous samples followed by GC-MS quantitation. The calibration plots are linear in the 2–1000 ng⋅L−1 chlorophenol concentration ranges.... 

    Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS

    , Article Microchimica Acta ; Volume 185, Issue 12 , 2018 ; 00263672 (ISSN) Bagheri, H ; Karimi Zandian, F ; Javanmardi, H ; Abbasi, A ; Golzari Aqda, T ; Sharif University of Technology
    Abstract
    A three–dimensional metal organic framework (3D–MOF) and a two–dimensional polyoxometalate (2D–POM), both incorporating nanostructured molybdenum (VI) oxide, were synthesized and implemented for headspace needle trap extraction of traces of chlorobenzenes (CBs). The 3D–MOF of type {(Mo2O6)(4,4′–bpy)}n and the 2D–POM of type [4,4′–bpy][Mo7O22] were synthesized by a solvothermal process and characterized by FT–IR, powder X–ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetry, energy dispersive X–ray, elemental mapping and Brunner–Emmet–Teller adsorption analyses. The 3D–MOF proved to be superior. Following thermal desorption, the CBs... 

    Wireless electrochemical preparation of gradient nanoclusters consisting of copper(II), stearic acid and montmorillonite on a copper wire for headspace in-tube microextraction of chlorobenzenes

    , Article Microchimica Acta ; Volume 185, Issue 1 , 2018 ; 00263672 (ISSN) Enteshari Najafabadi, M ; Bagheri, H ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    This work introduces a new gradient fiber coating for microextraction of chlorobenzenes. Nanoclusters of organoclay-Cu(II) on a copper wire were fabricated by wireless electrofunctionalization. The resultant gradient coatings are more robust, and thermally and mechanically stable. Wireless electrofunctionalization was carried out in a bipolar cell under a constant deposition potential and using an ethanolic electrolyte solution containing stearic acid and montmorillonite. Stearic acid acts as an inexpensive and green coating while montmorillonite acts as a modifier to impart thermal stability. The gradient morphology of the nanoclusters was investigated by scanning electron microscopy,... 

    Resorcinol-Formaldehyde Xerogel for Analysis of Environmental Pollutant in Aqueous Sample

    , M.Sc. Thesis Sharif University of Technology Zare, Maryam (Author) ; Bagheri, Habib (Supervisor) ; Es-haghi, Ali (Supervisor)
    Abstract
    In this study, a new resorcinol-formaldehyde xerogel was synthesized based on sol-gel technology and employed as a sorbent for micro solid phase extraction (µ-SPE) of BTEX and some selected pesticides from aqueous samples.
    In the first part, a µ-SPE method in combined with headspace solvent microextraction (HS-SME) along with gas chromatography- mass spectrometry detection (GC–MS) was developed for the analysis of BTEX in aqueous samples. In our knowledge, this is for the first time that these two different extraction methods has been coupled to maximize the advantage of each extraction method. Influential parameters such as the peristaltic pump flow rate, extraction volume, extraction... 

    A combined micro-solid phase-single drop microextraction approach for trace enrichment of volatile organic compounds

    , Article Analytical Methods ; Volume 7, Issue 16 , Jun , 2015 , Pages 6514-6519 ; 17599660 (ISSN) Bagheri, H ; Zare, M ; Piri Moghadam, H ; Es haghi, A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    An attempt was made to combine μ-solid phase extraction and headspace single drop microextraction techniques and use their advantages for trace determination of some volatile organic compounds in aqueous samples. After performing the two-step preconcentration approach, the desired analytes were determined by gas chromatography-mass spectrometry. A resorcinol-formaldehyde-based xerogel was used as the extraction medium in the μ-solid phase extraction (μ-SPE) method. Then, the extracted BTEX was eluted with a rather large amount of methanol. To remove the laborious process including solvent evaporation and further reconstitution, which is usually accompanied by loss of analytes and accuracy,... 

    Amine/phenyl gradient derived base layer as a comprehensive extractive phase for headspace cooled in–tube microextraction of volatile organic compounds in saliva

    , Article Journal of Pharmaceutical and Biomedical Analysis ; Volume 191 , 2020 Enteshari Najafabadi, M ; Bagheri, H ; Rostami, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A gradient derived base layer extractive phase was synthesized and applied for the determination of volatile organic compounds (VOCs) in saliva samples using the headspace cooled in–tube microextraction (HS–CITME) method. The base layers from three different sols of phenyltriethoxysilane (PTES), octyltrimethoxysilane (OTMS) and methyltrimethoxysilane (MTMS) as nonpolar precursors were individually dip coated on the stainless steel wires (SSW). Then, the hydrolyzed polar precursor aminopropyltriethoxysilane (APTES) reacted with the silanol groups already formed on the surface of SSWs via controlled rate infusion (CRI) method. The presence of polar and non–polar functional groups on the... 

    Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    , Article Analytica Chimica Acta ; Volume 713 , 2012 , Pages 63-69 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2012
    Abstract
    A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography-mass spectrometry (GC-MS). Various parameters affecting the extraction and... 

    Preparation and Application of Superhydrophobic Melamine Formaldehyde Modified by Graphene Sorbent for Extraction of Chlorobenzenes from Aqueous Samples by Needle-trap Device

    , M.Sc. Thesis Sharif University of Technology Dorabadi Zare, Farzaneh (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    Superhydrophobic surfaces have attracted much attention in recent years due to their unique properties. Artificial superhydrophobic surfaces can be fabricated by employing chemical modifying a hierarchical structured surface (micro- and nanostructures) with a low surface free energy material. In this report, we used a simple one-step coating process to prepare superhydrophobic sorbents with a large surface area. Surface chemistry and porosity are fundamental parameters for an efficient sorbent capable of extracting low levels of analytes. Considering physical and chemical peroperties of chlorobenzenes, superhydrophobic materials make to be good sorbents. So in this project melamine... 

    Multivariate optimization of hydrodistillation-headspace solvent microextraction of thymol and carvacrol from Thymus transcaspicus

    , Article Talanta ; Volume 79, Issue 3 , 2009 , Pages 695-699 ; 00399140 (ISSN) Kiyanpour, V ; Fakhari, A. R ; Alizadeh, R ; Asghari, B ; Jalali Heravi, M ; Sharif University of Technology
    2009
    Abstract
    In this paper multivariate response surface methodology (RSM) has been used for the optimization of hydrodistillation-headspace solvent microextraction (HD-HSME) of thymol and carvacrol in Thymus transcaspicus. Quantitative determination of compounds of interest was performed simultaneously using gas chromatography coupled with flame ionization detector (GC-FID). Parameters affecting the extraction efficiency were assessed and the optimized values were 5 min, 2 μL and 3 min for the extraction time, micro-drop volume and cooling time after extraction, respectively. The amounts of analyte extracted increased with plant weight. The calibration curves were linear in the ranges of 6.25-81.25 and... 

    Headspace solvent microextraction as a simple and highly sensitive sample pretreatment technique for ultra trace determination of geosmin in aquatic media

    , Article Journal of Separation Science ; Volume 29, Issue 1 , 2006 , Pages 57-65 ; 16159306 (ISSN) Bagheri, H ; Salemi, A ; Sharif University of Technology
    2006
    Abstract
    A headspace solvent microextraction method was developed for the trace determination of geosmin, an odorant compound, in water samples. After performing the extraction by a microdrop of an organic solvent, the microdrop was introduced directly into a GC-MS injection port. One-at-the-time optimization strategy was applied to investigate and optimize some important extraction parameters such as type of solvent, drop volume, temperature, stirring rate, ionic strength, sample volume, and extraction time. The analytical data exhibited an RSD of less than 5% (n = 5), a linear calibration range of 5-900 ng/L (r2 > 0.998), and a detection limit of 0.8 and 3.3 ng/L using two different sets of... 

    The geometrical characteristics of nickel-based metal organic framework on its entrapment capability

    , Article Journal of Chromatography A ; Volume 1610 , 2020 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, a three dimensional nickel–based metal organic framework (MOF) was synthesized via solvothermal and room temperature protocols. In order to study the effects of the synthesis conditions on the physical properties such as pore sizes and shapes of the prepared MOFs, their extraction capabilities were examined. Both MOFs were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and thermogravimetric analyses. Brilliant properties such as porous structure, high surface area and considerable thermal stability make them reasonable candidates to be employed as efficient extractive phases. The efficiency of the... 

    Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating

    , Article Analytica Chimica Acta ; Volume 863, Issue 1 , 2015 , Pages 20-28 ; 00032670 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A highly efficient polybutylene terephthalate (PBT)-based nanocomposite containing nickel oxide nanoparticles was synthesized by electrospinning technique and used as a fiber coating for solid phase microextraction. The influential morphological parameters and capability of the prepared nanocomposite including the NiO content, the coating time, the PBT concentration and applied voltage were considered for optimization. The applicability of the synthesized fiber coating was examined by headspace solid phase micro extraction and gas chromatography mass spectrometry detection of some volatile organic compounds in aqueous samples. Among the synthesized nanocomposites and pristine PBT nanofibers,... 

    Determination of essential oil components of artemisia haussknechtii boiss. using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry

    , Article Journal of Chromatography A ; Volume 1160, Issue 1-2 , 2007 , Pages 81-89 ; 00219673 (ISSN) Jalali Heravi, M ; Sereshti, H ; Sharif University of Technology
    2007
    Abstract
    A novel method for extraction and analysis of volatile compounds of Artemisia haussknechtii Boiss., using simultaneous hydro-distillation and static headspace liquid microextraction followed by gas chromatography-mass spectrometry (SHD-SHLPME-GCMS) is developed. SHLPME parameters including nature of extracting solvent, headspace volume and design, extraction time, sample weight and microdrop volume were optimized. Comparison of hydro-distillation gas chromatography-mass spectrometry and HD-SHLPME-GCMS showed that the latter method is fast, simple, inexpensive and effective for the analysis of volatile compounds of aromatic plants. By using this method, 56 compounds were extracted and... 

    Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples

    , Article Analytical Methods ; Volume 3, Issue 6 , Apr , 2011 , Pages 1284-1289 ; 17599660 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    Novel unbreakable solid phase microextraction (SPME) fiber coatings were fabricated by electrospinning method in which the polymeric solution was converted to nanofibers using high voltages. Four different polymers, polyurethane (PU), polycarbonate (PC), polyamide (PA) and polyvinyl chloride (PVC) were prepared as the fiber coatings on thin stainless steel wires. The extraction efficiencies of new coatings were investigated by headspace solid-phase microextraction (HS-SPME) of some environmentally important chlorobenzenes from aqueous samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Among them, PU showed a prominent efficiency. Effects of coating time and polymer... 

    Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating

    , Article Journal of Chromatography A ; Volume 1375 , 2015 , Pages 8-16 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In the present work, the roles of inorganic oxide nanoparticles on the extraction efficiency of polyethylene terephthalate-based nanocomposites were extensively studied. Four fiber coatings based on polyethylene terephthalate nanocomposites containing different types of nanoparticles along with a pristine polyethylene terephthalate polymer were conveniently electrospun on stainless steel wires. The applicability of new fiber coatings were examined by headspace-solid phase microextraction of some environmentally important volatile organic compound such as benzene, toluene, ethylbenzene and xylene (BTEX), as model compounds, from aqueous samples. Subsequently, the extracted analytes were... 

    Gradient extractive phase prepared by controlled rate infusion method: An applicable approach in solid phase microextraction for non–targeted analysis

    , Article Journal of Chromatography A ; Volume 1574 , 2018 , Pages 130-135 ; 00219673 (ISSN) Enteshari Najafabadi, M ; Kazemi, E ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The aim of this study is to introduce an extractive phase based on gradient concept by continuous changing in chemical functional groups for non–targeted analysis. For this purpose, three different two–component coatings containing (3–aminopropyl)trimethoxysilane (APTES) as polar and either phenyltriethoxysilane (PTES), octyl–trimethoxysilane (OTMS) or methyltrimethoxysilane (MTMS) as nonpolar precursors were formed on the modified stainless steel wires using controlled rate infusion (CRI) method. The presence of polar and/or non–polar functional groups on the surface of substrate was evaluated by Fourier–transform infrared spectroscopy (FTIR) together with contact angles determined... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    , Article Analytica Chimica Acta ; Volume 716 , 2012 , Pages 34-39 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Baghernejad, M ; Akbarinejad, A ; Sharif University of Technology
    2012
    Abstract
    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200nm for polyamide nanofibers with a homogeneous and porous surface... 

    An interior needle electropolymerized pyrrole-based coating for headspace solid-phase dynamic extraction

    , Article Analytica Chimica Acta ; Volume 634, Issue 2 , 2009 , Pages 209-214 ; 00032670 (ISSN) Bagheri, H ; Babanezhad, E ; Khalilian, F ; Sharif University of Technology
    2009
    Abstract
    A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the...