Loading...
Search for: heat-flux
0.007 seconds
Total 123 records

    Gaseous slip-flow mixed convection through ordered microcylinders

    , Article Journal of Thermophysics and Heat Transfer ; Vol. 28, issue. 1 , 2014 , p. 105-117 Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The fully developed longitudinal slip-flow mixed convection between a periodic bunch of vertical microcylinders arrangedin regular arraysis investigated inthe present work. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. The method considered is mainly analytical, in that the governing equations and three of the boundary conditions are exactly satisfied. The remaining symmetry condition on the right-hand boundary of the typical element is applied to the solution through the point-matching technique. The results... 

    A modified turbulent heat-flux model for predicting heat transfer in separating-reattaching flows and film cooling applications

    , Article Applied Thermal Engineering ; Volume 110 , 2017 , Pages 1609-1623 ; 13594311 (ISSN) Mazaheri, K ; Chaharlang Kiani, K ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study addresses a new effort to improve the prediction of the thermal field in separating-reattaching flows by making modifications in a low-Reynolds-number (LRN) version of HOGGDH heat-flux model proposed by Suga and Abe (2000). The modifications are based on introducing non-equilibrium effects of hydrodynamic flow field in the heat-flux model. Using an analytical approach, we have implemented P/ε, ignored in the base version, to the modified version. To do so, the model structure was changed and a damping function which is more sensitive to non-equilibrium flow features is also applied to the model. The modified heat-flux formulation along with a second moment closure... 

    Evaluation of heat conduction in a laser irradiated tooth with the three-phase-lag bio-heat transfer model

    , Article Thermal Science and Engineering Progress ; Volume 7 , 2018 , Pages 203-212 ; 24519049 (ISSN) Falahatkar, S ; Nouri-Borujerdi, A ; Mohammadzadeh, A ; Najafi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, a dental short pulse laser with a Gaussian beam profile was applied normally to the top surface of a mineral organ i.e. the human tooth for a root canal therapy. A numerical method of finite difference is adopted to solve the time-dependent heat transfer equation. The real boundary conditions of thermal insulation on the sharp segment of the root canal and periodic heat flux on the top boundary of the tooth were applied. The comparison of a three-phase-lag (TPL) bio-heat transfer model with other heat transfer studies has shown that this new bio-heat model (TPL) could accurately predict the thermal behaviour of a non-homogeneous structure such as the human tooth. It was... 

    Stress behaviour across human tooth by temperature gradient resulting of laser irradiation

    , Article Journal of Mechanical Engineering and Sciences ; Volume 14, Issue 1 , 2020 , Pages 6218-6228 Falahatkar, S ; Nouri Borujerdi, A ; Najafi, M ; Sharif University of Technology
    Universiti Malaysia Pahang  2020
    Abstract
    The authors report the simulation of temperature distribution and thermally induced stress in the premolar tooth under ND-YAG pulsed laser beam. The Three-Phase-Lag (TPL) non-Fourier model is proposed to describe the heat conduction in the human tooth with nonhomogeneous inner structures. A premolar tooth comprising enamel, dentin, and pulp with real shapes and thicknesses are considered and a numerical method of finite difference was adopted to solve the time-dependent TPL bio-heat transfer, strain and stress equations. The surface heating scheme is applied for simulation of laser therapy. The aim of this laser therapy is that the temperature of pulp reaches to 47oC. The results are... 

    An analytical solution for thermally fully developed combined pressure - electroosmotically driven flow in microchannels

    , Article International Journal of Heat and Mass Transfer ; Volume 50, Issue 5-6 , 2007 , Pages 1087-1096 ; 00179310 (ISSN) Qazi Zade, A ; Taghizadeh Manzari, M ; Hannani, S. K ; Sharif University of Technology
    2007
    Abstract
    An analytical solution is presented to study the heat transfer characteristics of the combined pressure - electroosmotically driven flow in planar microchannels. The physical model includes the Joule heating effect to predict the convective heat transfer coefficient in two dimensional microchannels. The velocity field, which is a function of external electrical field, electroosmotic mobility, fluid viscosity and the pressure gradient, is obtained by solving the hydrodynamically fully-developed laminar Navier-Stokes equations considering the electrokinetic body force for low wall zeta potentials. Then, assuming a thermally fully-developed flow, the temperature distribution and the Nusselt... 

    Transient and stability analysis in single-phase natural circulation

    , Article Annals of Nuclear Energy ; Volume 31, Issue 10 , 2004 , Pages 1177-1198 ; 03064549 (ISSN) Mousavian, S. K ; Misale, M ; D'Auria, F ; Salehi, M. A ; Sharif University of Technology
    2004
    Abstract
    This paper presents the mathematical modeling of single-phase natural circulation of the University of Genoa's rectangular loop (LOOP#1) by a computer program and using RELAP5 system code. The mass, momentum and energy conservation equations in transient form were solved numerically using the finite difference method. One-dimensional linear stability analysis was performed for the single-phase natural circulation loop and the numerical perturbation technique was used in this analysis. The Nyquist criterion was employed to find the stability map of the LOOP#1. The obtained transient results using the first order upwind scheme of the fluid temperatures in various sectors of the LOOP#1 are... 

    Experimental and numerical study on heat transfer characteristics for methane/air flame impinging on a flat surface

    , Article International Journal of Thermal Sciences ; Volume 110 , 2016 , Pages 229-240 ; 12900729 (ISSN) Morad, M. R ; Momeni, A ; Ebrahimi Fordoei, E ; Ashjaee, M ; Sharif University of Technology
    Elsevier Masson SAS  2016
    Abstract
    Heat flux from a premixed methane/air slot laminar flame jet impinging upward to a horizontal target plate is studied experimentally and numerically. Mach-Zehnder interferometer is used to obtain the overall temperature field. The flame jet is produced by a slot nozzle with length of L = 25 mm and width of W = 3 mm. The slot nozzle is parallel to the target plate which has the dimensions of 250 × 130 × 10 mm. The experimentally obtained heat flux distributions were compared for different firing rates and nozzle to plate spacing. A second peak in heat flux to the target surface (an off-center peak with respect to the axis of the nozzle) was observed for the shortest spacing and highest firing... 

    Experimental validation of a novel radiation based model for spacecraft attitude estimation

    , Article Sensors and Actuators, A: Physical ; Volume 250 , 2016 , Pages 114-122 ; 09244247 (ISSN) Labibian, A ; Pourtakdoust, S. H ; Kiani, M ; Sheikhi, A. A ; Alikhani, A ; Sharif University of Technology
    Elsevier 
    Abstract
    Attitude Determination (AD) is one of the key requirements of many current and emerging remote sensing missions. As such AD has been traditionally accomplished through a variety of algorithms and measurement models pertinent to sensing mechanisms. The current paper addresses conceptual validation and utility of a novel radiation based heat (measurement) model for space application. The proposed new Heat Attitude (HA) model utilizes temperature data to relate the Satellite Surfaces’ (SS) Net Heat Flux (NHF) to attitude assuming that the satellite navigational data are available. As Sun and the Earth are considered the main external sources of radiation, their effects are modeled for the SS... 

    An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels

    , Article Journal of Thermal Analysis and Calorimetry ; 2017 , Pages 1-10 ; 13886150 (ISSN) Pourfayaz, F ; Sanjarian, N ; Kasaeian, A ; Razi Astaraei, F ; Sameti, M ; Nasirivatan, S ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    In this paper, with the aim of enhancing the thermal conductivity of the fluid, a nanofluid is prepared based on SiO2. A series of experimental tests were carried out for both laminar and forced convection regimes in a horizontal tube with two different geometric shapes (circular and square cross section) subjected to constant wall heat flux (4735 W m−2). A comparative study has been done to investigate the effect of the geometry on the convective heat transfer. Moreover, the effect of the volume concentration on the behavior of the nanofluid and the base fluid was evaluated by comparing various volume concentrations (0.05, 0.07 and 0.2%). The experiments were done under two different... 

    Development of a radiation based heat model for satellite attitude determination

    , Article Aerospace Science and Technology ; Volume 82-83 , 2018 , Pages 479-486 ; 12709638 (ISSN) Labibian, A ; Pourtakdoust, S. H ; Alikhani, A ; Fourati, H ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    This paper is focused on the development and verification of a heat attitude model (HAM) for satellite attitude determination. Within this context, the Sun and the Earth are considered as the main external sources of radiation that could effect the satellite surface temperature changes. Assuming that the satellite orbital position (navigational data) is known, the proposed HAM provides the satellite surface temperature with acceptable accuracy and also relates the net heat flux (NHF) of three orthogonal satellite surfaces to its attitude via the inertial to satellite transformation matrix. The proposed HAM simulation results are verified through comparison with commercial thermal analysis... 

    An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 131, Issue 2 , 2018 , Pages 1577-1586 ; 13886150 (ISSN) Pourfayaz, F ; Sanjarian, N ; Kasaeian, A ; Razi Astaraei, F ; Sameti, M ; Nasirivatan, S ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    In this paper, with the aim of enhancing the thermal conductivity of the fluid, a nanofluid is prepared based on SiO2. A series of experimental tests were carried out for both laminar and forced convection regimes in a horizontal tube with two different geometric shapes (circular and square cross section) subjected to constant wall heat flux (4735 W m−2). A comparative study has been done to investigate the effect of the geometry on the convective heat transfer. Moreover, the effect of the volume concentration on the behavior of the nanofluid and the base fluid was evaluated by comparing various volume concentrations (0.05, 0.07 and 0.2%). The experiments were done under two different... 

    An experimental investigation into the melting of phase change material using Fe3O4 magnetic nanoparticles under magnetic field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 146, Issue 1 , 2021 , Pages 381-392 ; 13886150 (ISSN) Safaee Sadegh, S ; Aghababaei, A ; Mohammadi, O ; Jafari Mosleh, H ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The low thermal conductivity of phase change materials has resulted in prolonged melting and freezing processes (charge and discharge) in these materials. This problem has limited the application of these materials in the field of thermal energy storage. In the present study, the effects of adding Fe3O4 magnetic nanoparticles at various concentrations as well as applying the magnetic field on the melting process of paraffin as phase change material have been experimentally studied. Thereupon, a cubic chamber in which the left wall applied a constant heat flux was used. At the optimum concentration of nanoparticles (1 mass%), the constant magnetic field with the intensities of 0.01 T and... 

    Heat transfer due to electroosmotic flow of viscoelastic fluids in a slit microchannel

    , Article International Journal of Heat and Mass Transfer ; Volume 54, Issue 17-18 , August , 2011 , Pages 4069-4077 ; 00179310 (ISSN) Sadeghi, A ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2011
    Abstract
    The bio-microfluidic systems are usually encountered with non-Newtonian behaviors of working fluids. The rheological behavior of some bio-fluids can be described by differential viscoelastic constitutive equations that are related to PTT and FENE-P models. In the present work, thermal transport characteristics of the steady fully developed electroosmotic flow of these fluids in a slit microchannel with constant wall heat fluxes have been investigated. The Debye-Huckel linearization is adopted and the effects of viscous dissipation and Joule heating are taken into account. Analytical solutions are obtained for the transverse distributions of velocity and temperature and finally for Nusselt... 

    Application of a modified algebraic heat-flux model and second-moment-closure to high blowing-ratio film-cooling and corrugated heat-exchanger simulations

    , Article Applied Thermal Engineering ; Volume 124 , 2017 , Pages 948-966 ; 13594311 (ISSN) Mazaheri, K ; Chaharlang Kiani, K ; Karimi, M ; Sharif University of Technology
    Abstract
    The present paper outlines the application of the recently proposed heat-flux model (Mazaheri et al., 2017) to high blowing-ratio film-cooling and corrugated heat-exchanger simulations. Here, the focus is mainly on the accuracy of the predicted thermal fields, while to find out the sources of inaccuracy detailed analysis of the adopted second-moment-closure hydrodynamic model is provided. To do so, fundamental benchmarks which contain the dominant phenomena in the main cases are thoroughly analyzed to identify the anomalies. Then, the main cases including leading-edge film-cooling, antivortex film-cooling and corrugated heat-exchanger are investigated. The numerical predictions indicate that... 

    Three dimensional heat transfer modeling of gas-solid flow in a pipe under various inclination angles

    , Article Powder Technology ; Vol. 262, Issue. 1 , 2014 , pp. 223-232 ; ISSN: 0032-5910 Pishvar, M ; Saffar Avval, M ; Mansoori, Z ; Amirkhosravi, M ; Sharif University of Technology
    Abstract
    The turbulent heat transfer in gas-solid flows through an inclined pipe under various inclination angles is studied with constant wall heat flux. The hydrodynamic k- τ and kθ- τθ thermal two phase model is used in a lagrangian/Eulerian four way approach. The numerical results agreed reasonably with available experimental data in vertical and horizontal pipe flows. The effects of inclination angles on the flow patterns are reported. The pressure drop and Nusselt number are enhanced significantly as the inclination increases up to a certain angle. The mass loading ratio has influence on the optimal inclination angle. With increasing loading ratio, the optimal inclination angle of maximum... 

    Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    , Article Energy Conversion and Management ; Volume 50, Issue 4 , 2009 , Pages 1062-1068 ; 01968904 (ISSN) MolaeiDehkordi, A ; Mohammadi, A. A ; Sharif University of Technology
    2009
    Abstract
    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local... 

    Experimental Investigation of Melting of Two Immiscible Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Momeni, Meisam (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Heat transfer associated with phase change occurs in many physical phenomena. One of the ways of thermal energy storage is the use of latent heat phase change. Therefore, it is important to know the thermal performance of phase change material. In this research, the aim is to investigate the process of phase change of a system consists of two immiscible phase change materials and the comparison of this system with a system consists of one phase change material. The experiments with the two materials system is conducted in two ways. In the first state, that is the normal state, denser material is placed in the bottom and in the second state, denser material is placed in the top. Constant heat... 

    Modeling and Identification of Satellite Thermal Radiation Model for Attitude Estimation Using Temperature Sensors

    , M.Sc. Thesis Sharif University of Technology Moghanipour, Marjan (Author) ; Pourtakdoust, Hossein (Supervisor) ; Kiani, Maryam (Supervisor)
    Abstract
    Attaining accurate information about satellite attitude is one of the most important requirements in space missions in order to improve the accuracy of the satellite control and mission objectives. Many different sensors such as sun sensor, star sensor, horizon sensor, etc. are used to estimate spacecraft’s attitude. Attitude estimation using temperature sensors is a topic that has recently been addressed by some related researchers because, they need less power and budget to operate in comparison with the other sensors.Accuracy and heat model performance improvement is the main purpose of this project. To achieve a more accurate perspective of space thermal model, and the way heat transfers... 

    Experimental Attitude Determination Using Thermal Data

    , M.Sc. Thesis Sharif University of Technology Jafari, Abolfazl (Author) ; Pourtakdoost, Hossein (Supervisor)
    Abstract
    The problem of attitude determination (AD) has always been a challenging issue for space missions that is of importance either independently or for attitude control purposes. The problem of AD is generally focused from two aspects: measurement mechanisms (sensoring) and determination algorithms. From the former point of view, there exists a variety of measuring systems such as the Sun sensors, magnetometers, gyroscopes, star and horizon sensors that have been separately or collaboratively utilized for AD. Integrative usage of sensors not only can bring about added advantages in terms of accuracy, but also provides for estimates of attitude during special times such as the Sun eclipse. The... 

    Numerical Study of Film Cooling in a Space Thruster

    , M.Sc. Thesis Sharif University of Technology Madani, Mohammad Reza (Author) ; Mardani, Amir (Supervisor)
    Abstract
    In high-performance liquid fuel motors and space thrusters, the combustion chamber and nozzle walls are in contact with the gases caused by high temperature and pressure combustion, making severe thermal loads on the walls. Therefore, these systems require cooling mechanisms. The most common way of cooling in space thrusters is film cooling. This study is a numerical simulation of film cooling in the liquid fuel space thrusters. Numerical and empirical studies have been reviewed in this area and evaluated while conducting studies and results to select an appropriate model for ongoing project studies. Along this path, various fuel and oxidizing thrusters, including oxygen and hydrogen,...