Loading...
Search for: heat-pipes
0.007 seconds
Total 116 records

    Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch

    , Article International Journal of Thermal Sciences ; Volume 134 , 2018 , Pages 258-268 ; 12900729 (ISSN) Sedighi, E ; Amarloo, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    In addition to some approaches such as changing the working fluid or number of turns in a pulsating heat pipe (PHP), geometrical changes are also appealing for enhancing the thermal performance of this type of heat pipes. The main idea of this investigation is to increase heat transfer rate by increasing flow circulation of working fluid. By placing an additional branch in the evaporator section, a secondary bubble pump was created which improved the circulation of fluid inside PHP. In order to investigate the impact of this additional branch, two similar one-turn copper heat pipes were fabricated. One of them was the conventional PHP and the other had an additional branch and is named... 

    Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still

    , Article Energy ; Volume 75 , 2014 , pp. 501–507 ; ISSN: 03605442 Jahangiri Mamouri, S ; Gholami Derami, H ; Ghiasi, M ; Shafii, M. B ; Shiee, Z ; Sharif University of Technology
    Abstract
    A desalination system consumes energy for production of freshwater. Since the solar energy is a low-cost, environmentally clean, and available energy throughout the world, it could be the best source of energy for such systems. In this work, a modified desalination system is presented which uses advantages of thermosyphon heat pipes as a fast and high performance thermal conducting device, and at the same time, employs the advantages of evacuated tube collectors (ETCs) which are flexible and have high performance in adverse weather conditions. Results show considerable increase in the production rate of desalinated water and system efficiency with a maximum production rate of 1.02 kg/(m2 h)... 

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    A review on application of nanofluid in various types of heat pipes

    , Article Journal of Central South University ; Volume 26, Issue 5 , 2019 , Pages 1021-1041 ; 20952899 (ISSN) Nazari, M. A ; Ahmadi, M. H ; Sadeghzadeh, M ; Shafii, M. B ; Goodarzi, M ; Sharif University of Technology
    Central South University of Technology  2019
    Abstract
    Nanotechnology is widely used in heat transfer devices to improve thermal performance. Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability. In the present article, a comprehensive literature review is performed on the nanofluids’ applications in heat pipes. Based on reviewed studies, nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes, pulsating heat pipes, and thermosyphons. Besides, it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles; high concentration of nanoparticles causes a... 

    Vapor flow analysis in partially-heated concentric annular heat PIPES

    , Article International Journal of Computational Engineering Science ; Volume 5, Issue 1 , 2004 , Pages 235-244 ; 14658763 (ISSN) Layeghi, M ; Nouri Borujerdi, A ; Sharif University of Technology
    Imperial College Press  2004
    Abstract
    The steady-state laminar and incompressible vapor flow in four partially-beated concentric annular beat pipe (CAHP) is studied. The governing equations are solved numerically, using finite volume approach based on collocated grids. The first order upwind scheme and the QUICK scheme are used in the numerical solution. The vapor pressure distributions and velocity profiles along the annular vapor space are predicted for a number of test cases in the range of low to moderate radial Reynolds numbers. The results show that in a partially-heated annular beat pipe, as the radial Reynolds number increases, a number of recirculation zones may be created at both ends of the evaporator and condenser... 

    Exergy analysis of a flat plate solar collector in combination with heat pipe

    , Article International Journal of Environmental Research ; Vol. 8, Issue. 1 , 2014 , Pages 39-48 ; ISSN: 17356865 Kargarsharifabad, H ; Shafii, M. B ; Rahni, M. T ; Abbaspour, M ; Sharif University of Technology
    Abstract
    The use of solar collectors in combination with heat pipes is rapidly growing in recent years. Heat pipes, as heat transfer components, have undeniable advantages in comparison with other alternatives. The most important advantage is their high rate of heat transfer at minor temperature differences. Although there have been numerous studies on the heat analysis or first thermodynamic analysis of flat plate solar collectors in combination with heat pipes, the exergy analysis of these collectors is needed to be investigated. In this work, energy and exergy analysis of a flat plate solar collector with a heat pipe is conducted theoretically. Next, the exergy efficiency of pulsating heat pipe... 

    Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe

    , Article Heat Transfer Engineering ; Vol. 35, issue. 1 , 2014 , pp. 25-33 ; ISSN: 01457632 Mohammadi, M ; Mohammadi, M ; Ghahremani, A. R ; Shafii, M. B ; Mohammadi, N ; Sharif University of Technology
    Abstract
    For the present article, a pulsating heat pipe (PHP) is fabricated and tested experimentally by bending a copper tube. The effects of working fluid, heat input, charging ratio, inclination angle, magnets location, and ferrofluid (magnetic nanofluid) volumetric concentration have been investigated on the thermal performance of this PHP. Experimental results show that using ferrofluid as a working fluid improves the thermal performance of the PHP significantly. Moreover, applying a magnetic field on a ferrofluidic PHP reduces its thermal resistance. By changing the inclination angle of the PHP from vertical mode to angles close to the horizontal mode, the present PHP has a constant and... 

    Experimental investigation on performance of a rotating closed loop pulsating heat pipe

    , Article International Communications in Heat and Mass Transfer ; Volume 45 , 2013 , Pages 137-145 ; 07351933 (ISSN) Aboutalebi, M ; Nikravan Moghaddam, A. M ; Mohammadi, N ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Pulsating heat pipes (PHPs) are interesting heat transfer devices. Their simple, high maintaining, and cheap arrangement has made PHPs very efficient compared to conventional heat pipes. Rotating closed loop PHP (RCLPHP) is a novel kind of them, in which the thermodynamic principles of PHP are combined with rotation. In this paper, effect of rotational speed on thermal performance of a RCLPHP is investigated experimentally. The research was carried out by changing input power (from 25. W to 100. W, with 15. W steps) and filling ratio (25%, 50%, and 75%) for different rotational speeds (from 50. rpm to 800. rpm with an increment of 125. rpm). The results presented that at a fixed filling... 

    Promising technology for electronic cooling: Nanofluidic micro pulsating heat pipes

    , Article Journal of Electronic Packaging, Transactions of the ASME ; Volume 135, Issue 2 , 2013 ; 10437398 (ISSN) Jahani, K ; Mohammadi, M ; Shafii, M. B ; Shiee, Z ; Sharif University of Technology
    2013
    Abstract
    Currently, the thermal management of microelectromechanical systems (MEMS) has become a challenge. In the present research, a micro pulsating heat pipe (MPHP) with a hydraulic diameter of 508 lm, is experimented. The thermal performance of the MPHP in both the transient and steady conditions, the effects of the working fluid (water, silver nanofluid, and ferrofluid), heating power (4, 8, 12, 16, 20, 24, and 28 W), charging ratio (20, 40, 60, and 80%), inclination angle (0 deg, 25 deg, 45 deg, 75 deg, and 90 deg relative to horizontal axis), and the application of magnetic field, are investigated and thoroughly discussed. The experimental results show that the optimum charging ratio for water... 

    Thermal performance of an open loop pulsating heat pipe with ferrofluid (Magnetic Nano-Fluid)

    , Article ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012 ; 2012 , Pages 185-190 ; 9780791854778 (ISBN) Taslimifar, M ; Mohammadi, M ; Saidi, M. H ; Afshin, H ; Shafii, M. B ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Abstract
    In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location... 

    Experimental study of the startup performance of ferrofluidic open loop Pulsating Heat Pipes

    , Article ASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012, Rio Grande, 8 July 2012 through 12 July 2012 ; Volume 2 , 2012 , Pages 585-591 ; 9780791844786 (ISBN) Maziar, M ; Mehdi, T ; Siamak, K. H ; Mohammad Hassan, S ; Hossein, A ; Mohammad Behshad, S ; Sharif University of Technology
    2012
    Abstract
    Pulsating Heat Pipes (PHPs) are new and promising heat transfer devices. To implement the novel idea to vary the startup performance of a PHP using ferrofluid with and without the application of magnetic field, an experimental investigation is conducted. The effects of several important parameters including working fluid, charging ratio, heat input, ferrofluid concentration, internal pressure, and application of magnetic field on the startup performance of Open Loop Pulsating Heat Pipes (Open Loop PHPs) have been considered and described in detail. Obtained results show that using ferrofluid instead of distilled water can improve the startup performance of PHPs in certain conditions.... 

    Experimental study of the effects of ferrofluid on thermal performance of a pulsating heat pipe

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 435-440 ; 9780791844632 (ISBN) Maziar, M ; Mohammad, M ; Amir, R. G ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    In this work, a four-turn Pulsating Heat Pipe (PHP) is fabricated and tested experimentally. The novelty of the present PHP is the capability of obtaining various thermal performances at a specific heat input by changing the magnetic field. The effects of working fluid (water and ferrofluid), charging ratio (25%, 40%, and 55%), heat input (25, 35, 45, 55, 65, 75, and 85 W), orientation (vertical and horizontal heat mode), and magnetic field on the thermal performance of PHPs are investigated. The results showed that applying the magnetic field on the water based ferrofluid reduced the thermal resistance of PHP by a factor of 40.5% and 38.3% in comparison with the pure water case for the... 

    Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; 25 May , 2018 , Pages 1-13 ; 13886150 (ISSN) Akbari, A ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluid in which nanoparticles are dispersed in a base fluid and have generally a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. Graphene/water nanofluid with a concentration of 1 mg mL−1 and TiO2 (titania)/water nanofluid with a concentration of 10 mg mL−1 are used as the working fluids. To simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section is used. A one-turn... 

    Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 135, Issue 3 , 2019 , Pages 1835-1847 ; 13886150 (ISSN) Akbari, A ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluid in which nanoparticles are dispersed in a base fluid and have generally a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. Graphene/water nanofluid with a concentration of 1 mg mL −1 and TiO 2 (titania)/water nanofluid with a concentration of 10 mg mL −1 are used as the working fluids. To simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section is used. A... 

    Experimental Investigation of Heat Pipes Application in Solar Water Heaters

    , M.Sc. Thesis Sharif University of Technology Arab, Mobin (Author) ; Soltanieh, Mohammad (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Nowadays, radical increase in energy consumption guides humankind to find and harvest some alternative energy resources. Between the energy resources that have ever been known, Solar Energy is the most traditional one and Solar Water Heaters (SWHs) are the most ancient tools that have been used to store this energy up to now. Regarding this issue, many researches have been done to investigate different aspects of SWHs and the most conventional type was Thermosyphon SWH system. In this study, our aim is to investigate the influence of Pulsating Heat Pipes (PHPs) application as a heat transfer tool to convey absorbed solar energy to hot water reservoir of a SWH. In order to do this research,... 

    Experimental investigation of the effect of using closed-loop pulsating heat pipe on the performance of a flat plate solar collector

    , Article Journal of Renewable and Sustainable Energy ; Volume 5, Issue 1 , 2013 ; 19417012 (ISSN) Kargarsharifabad, H ; Mamouri, S. J ; Shafii, M. B ; Rahni, M. T ; Sharif University of Technology
    2013
    Abstract
    In this study, performance of a flat plate solar collector operating in conjunction with a closed-loop pulsating heat pipe is investigated experimentally. The experiments were carried out in Yazd, Iran. The experimental setup consisted of a flat plate solar collector, pulsating heat pipe, and a tank. The pulsating heat pipe's evaporator is located inside the flat plate collector. In order to investigate the effect of the evaporator length on the efficiency of the system, three different length collectors are manufactured in the evaporating section. In addition, the effects of the pulsating heat pipe filling ratio, inclination angle, and flow rate are investigated for each collector... 

    Experimental investigation on thermal performance of closed loop pulsating heat pipes with soluble and insoluble binary working fluids and a proposed correlation

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 55, Issue 2 , February , 2019 , pp 375–384 ; 09477411 (ISSN) Zamani, R ; Kalan, K ; Shafii, M. B ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this study, an experimental investigation was conducted from a thermal performance standpoint on closed-loop pulsating heat pipes (CLPHPs) with four different fluids and their water-based binary mixtures as working fluids with volume mixing ratios of 3:1, 1:1, and 1:3. Ethanol and acetone as two types of fluids that are soluble in water and, to unprecedentedly compare the behavior of insoluble mixtures with the soluble ones as the working fluids, toluene and hexane as two types that are insoluble in water were used. Additionally, to predict the thermal performance of the pure, soluble binary, and insoluble binary fluids simultaneously for the first time, a correlation was derived. © 2018... 

    Experimental investigation on thermal performance of closed loop pulsating heat pipes with soluble and insoluble binary working fluids and a proposed correlation

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 55, Issue 2 , 2019 , Pages 375-384 ; 09477411 (ISSN) Zamani, R ; Kalan, K ; Shafii, M. B ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this study, an experimental investigation was conducted from a thermal performance standpoint on closed-loop pulsating heat pipes (CLPHPs) with four different fluids and their water-based binary mixtures as working fluids with volume mixing ratios of 3:1, 1:1, and 1:3. Ethanol and acetone as two types of fluids that are soluble in water and, to unprecedentedly compare the behavior of insoluble mixtures with the soluble ones as the working fluids, toluene and hexane as two types that are insoluble in water were used. Additionally, to predict the thermal performance of the pure, soluble binary, and insoluble binary fluids simultaneously for the first time, a correlation was derived. © 2018,... 

    Experimental and Analytical Investigation on Power Generation from Pulsating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Moazami Goudarzi, Hossein (Author) ; Shafii, Mohammad Behzad (Supervisor)
    Abstract
    Recently pulsating heat pipe have been used efficiently for heat transfer appications especially for heat excretion. As the name speaks, a pulsating movement of the fluid exists in the device and the principal aim of this research is to utilize this potential mechanical work ability of this movement and convert it to electrical energy. In this system slug-plug pulsating movement paradigm has been used in a U-shape pipe for supplying electromagnetic energy generator. The magnet positioning between hot and cold sources is moved in a pulsating form by the fluid and therefore electrical force is induced in the form of pulsating voltage difference. Fluid current is modeled by governing equations... 

    Experimental Investigation of Effect of Nanofluid Stability on Thermal Performance and Flow Regimes in Pulsating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Akbari, Ali (Author) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluifid in which nanoparticles are dispersed in a base fluid and has a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. In order to simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section was used. A one-turn Pyrex PHP was also used to fully visualize flow patterns in the PHP. Our results showed that the material that a PHP made of and temperature of working fluid...