Loading...
Search for: heat-transfer-analysis
0.006 seconds

    Droplet condensation on chemically homogeneous and heterogeneous surfaces

    , Article Journal of Applied Physics ; Volume 120, Issue 12 , 2016 ; 00218979 (ISSN) Ashrafi, A ; Moosavi, A ; Sharif University of Technology
    American Institute of Physics Inc  2016
    Abstract
    Nucleation and growth of condensing droplets on horizontal surfaces are investigated via a 2-D double distribution function thermal lattice Boltzmann method. First, condensation on completely uniform surface is investigated and different mechanisms which cause dropwise and filmwise condensation are studied. The results reveal the presence of cooled vapor layer instability in the condensation on completely smooth surfaces. In the second step, condensation on chemically heterogeneous surfaces is investigated. Moreover, the effect of non-uniformity in the surface temperature is also studied. The results indicate that the vapor layer instability and the nucleation start from the heterogeneities.... 

    A constitutive model for shape memory polymers with application to torsion of prismatic bars

    , Article Journal of Intelligent Material Systems and Structures ; Volume 23, Issue 2 , 2012 , Pages 107-116 ; 1045389X (ISSN) Baghani, M ; Naghdabadi, R ; Arghavani, J ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    In this article, satisfying the second law of thermodynamics, we present a 3D constitutive model for shape memory polymers. The model is based on an additive decomposition of the strain into four parts. Also, evolution laws for internal variables during both cooling and heating processes are proposed. Since temperature has considerable effect on the shape memory polymer behavior, for simulation of a shape memory polymer-based structure, it is required to perform a heat-transfer analysis. Commonly, an experimentally observed temperature rate-dependent behavior of shape memory polymers is justified by a rate-dependent glassy temperature, but using the heat-transfer analysis, it is shown that... 

    Heat transfer analysis of a porously covered heated square cylinder, using a hybrid Navier-Stokes-lattice Boltzmann numerical method

    , Article International Journal of Thermal Sciences ; Volume 91 , May , 2015 , Pages 59-75 ; 12900729 (ISSN) Salimi, M. R ; Taeibi Rahni, M ; Jam, F ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    In this work, two-dimensional laminar flow and heat transfer across a heated square cylinder, covered by a porous layer in a plane channel have been numerically investigated. The flow and thermal fields inside the porous layer were simulated using BrinkmaneForchmeyer extended Darcy model. Simulations were performed in different Reynolds numbers (Re = 60, 120, 160, and 200), porosities (ω = 0.7, 0.87, and 0.96), solid to fluid thermal conductivity ratios (λR = 10, 200, and 2000) and blockage ratios (BR = 0.5, 0.25 and 0.125). The effects of the mentioned parameters on pressure drop and heat transfer rate were investigated in detail. Also, the contribution of each side of the central squared... 

    Advanced heat transfer analysis of a U-shaped pulsating heat pipe considering evaporative liquid film trailing from its liquid slug

    , Article Applied Thermal Engineering ; Volume 138 , 28 June , 2018 , Pages 475-489 ; 13594311 (ISSN) Nemati, R ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In order to study the heat transfer mechanism and predict the heat transfer capability of a pulsating heat pipe (PHP), a numerical model was used to simulate the oscillating behavior of liquid slug considering liquid film thickness in the evaporator and reduction of liquid film thickness due to evaporation. In this article, thermal performance of an open loop closed end PHP of copper with a diameter of 1 mm and various working fluids including water (DW) and ethanol was investigated. The governing equations of mass, momentum, and energy equations were solved for liquid slug and vapor plugs. The results showed that by considering liquid film thickness behind the liquid slug, for both the... 

    Heat and mass transfer analysis and optimization of freeze desalination utilizing cold energy of LNG leaving a power generation cycle

    , Article Desalination ; Volume 527 , 2022 ; 00119164 (ISSN) Salakhi, M ; Eghtesad, A ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Freeze desalination (FD) works upon the separation of impurities from pure water during ice crystals formation. The required cold source could be supplied by the cold energy of liquefied natural gas (LNG). In the current study, freeze desalination of seawater is explored by directly exploiting the cold energy of LNG within an appropriate range of temperature after producing work in a power generation cycle. A detailed discussion has been given on the inlet temperature of LNG to the FD unit for the first time. The direct utilization has the privilege of eliminating the addition of a secondary refrigerant and its refrigeration cycle to the FD process. A multi-objective optimization is... 

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy...