Search for: heat-transport-capability
0.006 seconds

    An experimental investigation and optimization of screen mesh heat pipes for low-mid temperature applications

    , Article Experimental Thermal and Fluid Science ; Volume 84 , 2017 , Pages 120-133 ; 08941777 (ISSN) Jafari, D ; Shamsi, H ; Filippeschi, S ; Di Marco, P ; Franco, A ; Sharif University of Technology
    The perspectives of utilization of a screen mesh heat pipe (HP) for low to medium operating temperature applications are studied in this study. A two-dimensional mathematical model for heat and mass transfer of HPs is presented to define its performances under steady state operations. The model couples heat conduction in the wall with both liquid flow in the wick and vapor flow in the core. Experimental analysis is developed to evaluate the influence of operating parameters (the orientation and the cooling temperature) as well as the evaporator section length on the performance of the HP. Furthermore, a modeling approach to optimize the HP performance from a thermal point of view is... 

    Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 18, Issue 1 , 2014 , Pages 18-38 ; ISSN: 15567265 Mohammadi, M ; Taslimifar, M ; Haghayegh, S ; Hannani, S. K ; Shafii, M. B ; Saidi, M. H ; Afshin, H ; Sharif University of Technology
    The present research proposes an effective method to enhance the heat transport capability of conventional electronic coolers and improve their thermal management. Pulsating heat pipes (PHPs) are outstanding heat transfer devices in the field of electronic cooling. In the present study, two sets of open-loop pulsating heat pipes (OLPHPs) for two different magnetic nanofluids (with and without surfactant) were fabricated and their thermal performance was experimentally investigated. Effects of working fluid (water and two types of magnetic nanofluids), heating power, charging ratio, nanofluid concentration, inclination angle, application of a magnetic field, and magnet location are described.... 

    Effects of surface coating of nanoparticles on thermal performance of Open Loop Pulsating Heat Pipes

    , Article ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012, 8 July 2012 through 12 July 2012 ; Volume 2 , 2012 , Pages 593-599 ; 9780791844786 (ISBN) Mehdi, T ; Maziar, M ; Ali, A ; Hossein, A ; Mohammad Hassan, S ; Mohammad Behshad, S ; Siamak, K. H ; Sharif University of Technology
    Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated....