Loading...
Search for: heavy-oil-production
0.006 seconds
Total 70 records

    Effect of small scale flow barriers heterogeneities and connate water on displacement efficiency of polymer floods to heavy oil reservoirs

    , Article Canadian Journal of Chemical Engineering ; Vol. 91, issue. 10 , October , 2013 , p. 1729-1740 ; ISSN: 00084034 Mohammadi, S ; Ghazanfari, M. H ; Masihi, M ; Vossoughi, S ; Sharif University Of Technology
    Abstract
    This work concerns a fundamental understanding of how heterogeneities induced by flow barriers and connate water affect the displacement efficiency of polymer floods, which has rarely been studied in the available literature. Here, a series of water/polymer injection experiments to heavy oil performed on five-spot glass micromodels containing randomly distributed shale structures is presented. It has been found that macroscopic efficiency of polymer flooding majorly depends on flow barriers distribution/configuration; shale content and geometrical characteristics; presence of connate water and wettability of medium. Microscopic pictures revealed that the main parts of connate water were... 

    The semi-analytical modeling and simulation of the VAPEX process of ""Kuh-e-Mond"" heavy oil reservoir

    , Article Petroleum Science and Technology ; Vol. 29, issue. 5 , Oct , 2009 , p. 535-548 ; ISSN: 10916466 Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    A study of enhanced heavy oil recovery by two well cyclical steam assisted gravity drainage (TWC-SAGD) in conventional and fractured reservoirs

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 10 , Dec , 2014 , pp. 1065-1076 ; ISSN: 15567036 Ghoodjani, E ; Bolouri, S. H ; Sharif University of Technology
    Abstract
    Steam-assisted gravity drainage is one of the most promising strategies to develop huge heavy oil and bitumen accumulations. Like the other thermal processes, this method aims at reducing oil viscosity by increasing the temperature. But in an economical point of view, it requires a great volume of steam for injection. Moreover, early breakthrough of steam and high steam-oil ratio makes it uneconomical, especially in long production time. In this study, a new method, two wells cyclical steam-assisted gravity drainage is compared with a conventional steam-assisted gravity drainage process. Well configuration in two wells cyclical steam-assisted gravity drainage is the same as the... 

    The semi-analytical modeling and simulation of the VAPEX process of "Kuh-e-Mond" heavy oil reservoir

    , Article Petroleum Science and Technology ; Volume 29, Issue 5 , 2011 , Pages 535-548 ; 10916466 (ISSN) Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    Monitoring the effect of discontinuous shales on the surfactant flooding performance in heavy oil reservoirs using 2D glass micromodels

    , Article Petroleum Science and Technology ; Vol. 32, issue. 12 , Apr , 2014 , p. 1404-1417 ; ISSN: 10916466 Mohammadi, S ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Saidian, M ; Sharif University of Technology
    Abstract
    Although most heavy oil reservoirs contain discontinuous shaly structures, there is a lack of fundamental understanding how the shaly structures affect the oil recovery efficiency, especially during surfactant flooding to heavy oils. Here, an experimental study was conducted to examine the effect of discontinuous shales on performance of surfactant flooding by introducing heterogeneities to represent streaks of shale in five-spot glass micromodels. Results show that oil recovery in presence of shale streak is lower than in its absence. Based on the authors' observations, the presence of flow barriers causes premature breakthrough of injected fluids and also an unstable displacement front. As... 

    Monitoring the role of fracture geometrical characteristics on fingering initiation/development during heavy oil miscible displacements in fractured porous media

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 35, issue. 12 , Aug , 2010 , p. 1129-1139 ; ISSN: 15567036 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Finger initiation/development at fluid-fluid interface during miscible floods can cause poor displacement efficiency, which is undesirable in enhanced oil recovery processes. In this work, a series of hydrocarbon injection experiments performed on 5-spot glass micromodels that were initially saturated with the heavy crude oil. The fractured micromodels with different fracture geometrical characteristics were used in the tests. High quality image analysis was applied to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that higher solvent dispersion in the fractures rather than matrix... 

    Experimental and simulation studies of the effect of vertical permeability barriers on oil recovery efficiency during solvent injection processes

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 33, issue. 20 , Nov , 2009 , p. 1889-1900 ; ISSN: 15567036 Dehghan, A. A ; Farzaneh, S. A ; Kharrat, R ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Almost all of the heavy oil reservoirs contain discontinuous permeability barriers (shales) with different structures. However, the effect of shaly layer geometrical characteristics including: spacing from wells, discontinuity, orientation, shaly layers' spacing and length, and heterogeneous distribution on oil recovery factor in the presence of gravity force are not well understood. In this work, a series of solvent injection experiments were conducted on various vertical one-quarter five-spot glass micromodels, containing barriers, which were initially saturated with a heavy oil sample. The oil recovery was measured by analysis of the pictures provided continuously during the injection... 

    Understanding the polydisperse behavior of asphaltenes during precipitation

    , Article Fuel ; Vol. 117, issue. PART A , 2014 , pp. 206-217 Tavakkoli, M ; Panuganti, S. R ; Taghikhani, V ; Pishvaie, M. R ; Chapman, W. G ; Sharif University of Technology
    Abstract
    Asphaltenes are a polydisperse fraction of the crude oil, the phase behavior of which is significantly affected by the changes in pressure, temperature and composition. The focus of this study is to model the polydisperse asphaltenes' precipitation onset condition and the amount of precipitate from solvent-diluted crude oils using the Perturbed Chain form of the Statistical Associating Fluid Theory (PC-SAFT) over a wide range of crude oil density. Heavy oil and bitumen production can involve diluting with paraffinic solvents. Different fractions of the polydisperse asphaltenes thus precipitated are predicted and when compared to the experimental data show a remarkable matching for different... 

    Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: Experimental and modeling study

    , Article Energy and Fuels ; Volume 27, Issue 12 , 2013 , Pages 7217-7232 ; ISSN: 08870624 Ghanavati, M ; Shojaei, M. J ; Ahmad Ramazani, S. A ; Sharif University of Technology
    2013
    Abstract
    Heavy and extra heavy crude oils usually have a high weight percentage of asphaltene, which could induce many problems during production to refining processes. Also, asphaltene has the main role on the high viscosity of the heavy and extra heavy crude oils. In this paper, the effects of asphaltene characteristics on the crude oil rheological properties have been experimentally and theoretically investigated using different classes of the suspension models. For experimental investigation, the asphaltene was first precipitated from the original heavy crude oil and then 10 well-defined reconstituted heavy oil samples are made by dispersing the asphaltene into the maltene (i.e., deasphalted... 

    Monitoring the role of fracture geometrical characteristics on fingering initiation/development during heavy oil miscible displacements in fractured porous media

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 12 , Aug , 2013 , Pages 1129-1139 ; 15567036 (ISSN) Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    2013
    Abstract
    Finger initiation/development at fluid-fluid interface during miscible floods can cause poor displacement efficiency, which is undesirable in enhanced oil recovery processes. In this work, a series of hydrocarbon injection experiments performed on 5-spot glass micromodels that were initially saturated with the heavy crude oil. The fractured micromodels with different fracture geometrical characteristics were used in the tests. High quality image analysis was applied to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that higher solvent dispersion in the fractures rather than matrix... 

    Experimental investigation of microscopic/macroscopic efficiency of polymer flooding in fractured heavy oil five-spot systems

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 135, Issue 3 , 2013 ; 01950738 (ISSN) Sedaghat, M. H ; Ghazanfari, M. H ; Parvazdavani, M ; Morshedi, S ; Sharif University of Technology
    2013
    Abstract
    This paper concerns on experimental investigation of biopolymer/polymer flooding in fractured five-spot systems. In this study, a series of polymer injection processes were performed on five-spot glass type micromodels saturated with heavy crude oil. Seven fractured glass type micromodels were used to illustrate the effects of polymer type/concentration on oil recovery efficiency in presence of fractures with different geometrical properties (i.e., fractures orientation, length and number of fractures). Four synthetic polymers as well as a biopolymer at different levels of concentration were tested. Also a micromodel constituted from dead-end pores with various geometrical properties was... 

    The determination of effective diffusivity coefficients in a solvent gas heavy oil system for methane

    , Article Petroleum Science and Technology ; Volume 30, Issue 24 , 2012 , Pages 2582-2593 ; 10916466 (ISSN) Zamanian, E ; Dadvar, M ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    2012
    Abstract
    In this investigation, an accurate high pressure and temperature diffusion setup was applied to measure the diffusion coefficients of methane in Iranian heavy oils in presence and absence of porous media by using the pressure-decay method. The solvent diffusivity in heavy oil was determined by both graphical and numerical methods. In addition, the effects of the porous medium and the temperature on the molecular diffusion coefficient of the solvent gas in the liquid phase were discussed and finally, using experimental data, a functionality dependence of molecular diffusivity on temperature and porous medium characteristics was proposed  

    The effect of geometrical properties of reservoir shale barriers on the performance of Steam-assisted Gravity Drainage (SAGD)

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 34, Issue 23 , 2012 , Pages 2178-2191 ; 15567036 (ISSN) Fatemi, S. M ; Sharif University of Technology
    Abstract
    Many bitumen reservoirs contain shale layers of varying thickness, lateral extent, and frequency. These shale layers, depending on their size, vertical and horizontal locations, and continuity throughout the reservoir, may act as a flow barrier and severely reduce vertical permeability of the pay zone and slow down the steam-assisted gravity drainage steam chamber development. Therefore, to improve productivity in these reservoirs, understanding of the effects of reservoir heterogeneities has become necessary. This work presents numerical investigation of the effects of shale barriers on steam-assisted gravity drainage performance when applied to produce mobile heavy oil. The most concern of... 

    A comparative study on WAS, SWAS, and solvent-soak scenarios applied to heavy-oil reservoirs using five-spot glass micromodels

    , Article Journal of Canadian Petroleum Technology ; Volume 51, Issue 5 , 2012 , Pages 383-392 ; 00219487 (ISSN) Farzaneh, S. A ; Dehghan, A. A ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    In this work, a series of solvent- and water-injection scenarios were conducted on horizontal five-spot glass micromodels that were saturated initially with heavy oil. Sandstone and limestone rock look-alike and network patterns with different pore structures were used in the experiments. The results show that the ultimate oil recovery of a water-alternating-solvent (WAS) scheme was greater than that of a simultaneously water-alternating-solvent (SWAS) scheme, and the efficiency of a solvent-soak scheme also offers a greater recovery. Likewise, the WAS scheme resulted in greater oil recovery when compared with continuous solvent injection (CSI), with the same amount of solvent consumption.... 

    Quantifying the role of pore geometry and medium heterogeneity on heavy oil recovery during solvent/Co-solvent flooding inwater-wet systems

    , Article Journal of Porous Media ; Volume 14, Issue 4 , 2011 , Pages 363-373 ; 1091028X (ISSN) Dehghan, A. A ; Kharrat, R ; Ghazanfari, M. H ; Vossoughi, S ; Sharif University of Technology
    Abstract
    Porous medium characteristics (e.g., pore geometry and medium heterogeneity) as well as the chemical nature of the co-solvents crucially affect the oil displacement efficiency during solvent flooding processes. In this work, initially saturated models with heavy crude oil were used to perform a series of solvent injection experiments. Several onequarter five-spot micromodels with pre-designed pore geometry were constructed and used. In addition, rock-look-alike flow patterns generated from thin sections of sandstone and dolomite reservoir rocks were etched onto glass plates to form micromodels mimicking the pore geometry and heterogeneity of these rocks. Four different groups of chemicals... 

    Characterization of viscous fingering during displacements of low tension natural surfactant in fractured multi-layered heavy oil systems

    , Article Chemical Engineering Research and Design ; Volume 96 , 2015 , Pages 23-34 ; 02638762 (ISSN) Arabloo, M ; Shokrollahi, A ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    Characterization of viscous fingering in low tension displacements especially for heavy oil surfactant pair in heterogeneous systems is neither straight forward nor well understood. In this work layered porous models containing fractures with different geometrical properties were used and the finger behavior during displacement of LTNS, as a new EOR agent, in heavy oil was quantified. Dynamic propagation of the fingers independent to the type of heterogeneity is well correlated with the dimensionless displacement time in a linearly form. And also, the rate of finger growth is nearly independent to the type of medium heterogeneity. When injection is scheduled through high permeable region in... 

    Worm-like micelles:a new approach for heavy oil recovery from fractured systems

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 5 , 2015 , Pages 951-958 ; 00084034 (ISSN) Kianinejad, A ; Saidian, M ; Mavaddat, M ; Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    In this work, a new type of flooding system, "worm-like micelles", in enhanced heavy oil recovery (EOR) has been introduced. Application of these types of surfactants, because of their intriguing and surprising behaviour, is attractive for EOR studies. Fundamental understanding of the sweep efficiencies as well as displacement mechanisms of this flooding system in heterogeneous systems especially for heavy oils remains a topic of debate in the literature. Worm-like micellar surfactant solutions are made up of highly flexible cylindrical aggregates. Such micellar solutions display high surface activity and high viscoelasticity, making them attractive in practical applications for EOR. In this... 

    An experimental and numerical investigation of solvent injection to heavy oil in fractured five-spot micromodels

    , Article Petroleum Science and Technology ; Volume 28, Issue 15 , 2010 , Pages 1567-1585 ; 10916466 (ISSN) Farzaneh, S. A ; Ghazanfari, M. H ; Kharrat, R ; Vossoughi, S ; Sharif University of Technology
    2010
    Abstract
    In this work a series of solvent injection experiments was conducted on horizontal glass micromodels at several fixed flow rate conditions. The micromodels were initially saturated with heavy crude oil. The produced oil as a function of injected volume of solvents was measured using image analysis of the continuously provided pictures. In order to investigate the macroscopic behavior of the process in different media, several fractured, with constant width, and nonfractured five-spot micromodels were designed and used. The measured data have also been used for verifying and developing a simulation model that was later used for sensitivity analysis of some parameters that affect oil recovery.... 

    Synergy effects of ions, resin, and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines

    , Article Fuel ; Volume 165 , 2016 , Pages 75-85 ; 00162361 (ISSN) Lashkar Bolooki, M ; Riazi, M ; Ayatollahi, S ; Zeinol Abedini Hezave, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    It is well established that the heavy oil components including asphaltenes and resins play vital roles on the interfacial tension (IFT) of acidic crude oil (ACO) and aqueous solutions. Therefore, this experimental work is designed to investigate the possible synergism between salt ions, resin, and asphaltene on the IFT of ACO/low and high salinity brines containing MgCl2/NaCl and CaCl2. The results demonstrate that a complex ion of MgCl2 - resin component created in the solution could occupy the sites at the interface at high MgCl2 concentration. However, the results show that on the contrary, the molecular arrangement of MgCl2 and asphaltene at low and high MgCl2 concentration could be... 

    Thermogravimetric analysis and kinetic study of heavy oil pyrolysis

    , Article Petroleum Science and Technology ; Volume 34, Issue 10 , 2016 , Pages 911-914 ; 10916466 (ISSN) Motahari Nezhad, M ; Hami, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    ABSTRACT: Pyrolysis, so-called devolatilization, is one of the first steps of all thermochemical processes occurring in an inert atmosphere. The authors discuss the main kinetic features of heavy oil pyrolysis, on the basis of the data derived m from a TGA analysis and by using a kinetic model. The samples were heated over a range of temperature from 400 K to 430°C at various heating rates between 10 and 80°C/min. Experimental results showed that the effect of time is considerable in the case of tar conversion, compared to char and gases