Loading...
Search for: helmholtz
0.013 seconds
Total 22 records

    Position control of a wheel-based miniature magnetic robot using neuro-fuzzy network

    , Article Robotica ; Volume 40, Issue 11 , 2022 , Pages 3895-3910 ; 02635747 (ISSN) Salehi, M ; Pishkenari, H. N ; Zohoor, H ; Sharif University of Technology
    Cambridge University Press  2022
    Abstract
    Untethered small-scale robots can accomplish tasks which are not feasible by conventional macro robots. In the current research, we have designed and fabricated a miniature magnetic robot actuated by an external magnetic field. The proposed robot has two coaxial wheels and one magnetic dipole which is capable of rolling and moving on the surface by variation in the direction of magnetic field. To generate the desired magnetic field, a Helmholtz electromagnetic coil is manufactured. To steer the robot to the desired position, at first the robot dynamics is investigated, and subsequently a controller based on a neuro-fuzzy network has been designed. Finally, the proposed controller is... 

    Numerical investigation of two-phase secondary Kelvin-Helmholtz instability

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 228, Issue 11 , October , 2014 , Pages 1913-1924 ; ISSN: 09544062 Fatehi, R ; Shadloo, M. S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    Instability of the interface between two immiscible fluids representing the so-called Kelvin-Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers Ri=0.01 and Ri=0.1 while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow.... 

    Experimental study on the interfacial instability of particle-laden stratified shear flows

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 40, Issue 4 , April , 2018 ; 16785878 (ISSN) Khavasi, E ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Turbidity currents are one of the more frequently observed types of stratified flows. In these currents, the density difference is created as a result of suspended particles. The interfacial instability of turbidity current is studied experimentally in the present research. Both Kelvin–Helmholtz and (asymmetric) Holmboe instabilities are observed during the experiments; the first one was downstream, and the second one was upstream of the obstacle. Kelvin–Helmholtz instability is observed by approximately zero (phase) speed with respect to the mean flow. With the aim of measuring spectral distribution of velocity fluctuations, the effects of some parameters are studied on interfacial waves;... 

    3D elastodynamic fields of non-uniformly coated obstacles: Notion of eigenstress and eigenbody-force fields

    , Article Mechanics of Materials ; Volume 41, Issue 9 , 2009 , Pages 989-999 ; 01676636 (ISSN) Shodja, H. M ; Delfani, M. R ; Sharif University of Technology
    2009
    Abstract
    Based on wave-function expansion, the time harmonic wave scattered by a circular and spherical inhomogeneity has been studied by numerous investigators. This method has also been employed to axisymmetrically coated circular and spherical inhomogeneities by some authors. When the geometry of the obstacle is not axisymmetric, the wave-function expansion is no longer applicable. In this paper, it is proposed to employ the dynamic equivalent inclusion method (DEIM) which is more general than the methods presented in the literature. It will be seen that DEIM may be used to treat a wide range of situations in a unified manner and is not bound to certain symmetries. The DEIM was first proposed by... 

    Linear spatial stability analysis of particle-laden stratified shear layers

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 6 , 2019 ; 16785878 (ISSN) Khavasi, E ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Hydrodynamic instabilities at the interface of stratified shear layers could occur in various modes. These instabilities have an important role in the mixing process. In this work, the linear stability analysis in spatial framework is used to study the stability characteristics of a particle-laden stratified two-layer flow. The effect of parameters such as velocity-to-density thickness ratio, bed slope, viscosity as well as particle size on the stability is considered. A simple iterative method applying the pseudospectral collocation method that employed Chebyshev polynomials is used to solve two coupled eigenvalue equations. Based on the results, the flow becomes stable for Richardson... 

    Conference room reverberation time correction using helmholtz resonators lined with absorbers

    , Article Shock and Vibration ; Vol. 2014, issue , May , 2014 Namvar Arefi, H ; Ghiasi, S. M. A ; Ghaffari, S. M ; Ramezanghorbani, F ; Sharifpour, S ; Irajizad, P ; Ghoreishi Langroudi, S. D ; Amjadi, A ; Sharif University of Technology
    Abstract
    Echo and sound resonance in a conference room cause obscure speech and make listeners tired. Thus, the acoustical properties of a conference room are vitally important. The conference room 412 at Sharif University Physics Department failed to meet basic acoustical standards. The aim of this research is to improve reverberation time (RT) of the conference room using Helmholtz resonators with defined dimensions, diffusers, and sound absorbers. Helmholtz resonators are widely used to absorb sound noise especially at low frequencies. They are particularly useful when noise has a narrow-frequency band. One of the advantages of using Helmholtz resonators is their capacity to be tuned on different... 

    A tunable helmholtz resonator for electromagnetic energy harvesting

    , Article Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, 23 October 2018 through 25 October 2018 ; 2019 , Pages 322-325 ; 9781728101279 (ISBN) Askari Farsangi, M. A ; Zohoor, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, acoustic energy harvesting using a tunable Helmholtz Resonator (HR) is investigated. The frequency of resonator can be changed by varying the radial force in a membrane which is used in one of its face. Applying acoustic pressure, vibrates the air inside HR neck and therefore changes pressure in HR chamber which results in membrane vibration. Attached magnet to the membrane will vibrate and its relative motion to a fixed coil generates voltage on the basis of Faraday's law of induction. Modeling approach is developed considering equivalent nonlinear membrane stiffness and coupling of electrical circuit and mechanical device. At the end, system behavior is studied numerically... 

    General solution of linear differential equations by using differential transfer matrix method

    , Article 2005 European Conference on Circuit Theory and Design, Cork, 28 August 2005 through 2 September 2005 ; Volume 3 , 2005 , Pages 113-116 ; 0780390660 (ISBN); 9780780390669 (ISBN) Eghlidi, M. H ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2005
    Abstract
    A new analytical method for finding the general solution of the nth-order linear differential equation with variable coefficients is given based on generalizing the idea of differential transfer matrix method already proposed for solving the second order Helmholtz equation. Our generalization has two aspects. First, the given formulation copes with the nth-order linear differential equations, rather than the special case of second order wave equations. Second, the proposed approach is generalized in several different ways each yielding different types of differential transfer matrices with correspondingly different numerical accuracies. The presented methods can be applied to problems such... 

    Acoustic energy harvesting via magnetic shape memory alloys

    , Article Journal of Physics D: Applied Physics ; Volume 52, Issue 13 , 2019 ; 00223727 (ISSN) Askari Farsangi, M. A ; Zohoor, H ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This study investigates acoustic energy harvesting via magnetic shape memory alloys (MSMA). The acoustic pressure impacts the neck of a Helmholtz resonator (HR) with a flexible face made of an elastic membrane. The design of the proposed energy harvester let radial force in the membrane be tunable. An MSMA is clamped to the membrane, and a proof mass is attached to the other end. The enhanced sound pressure vibrates the membrane and, therefore, excites the base of the MSMA specimen made of Ni-Mn-Ga to apply strain to it. Inserting strain onto the MSMA leads to variant reorientation and change of magnetization vectors, resulting in a change in flux passing through the pick-up coil. Therefore,... 

    Collective Dynamics of Interacting Particles in Fluid Flow

    , Ph.D. Dissertation Sharif University of Technology Abedi, Maryam (Author) ; Jalali, Mir Abbas (Supervisor)
    Abstract
    Each of us at some point in our life has been astonished by the observation of the collective motion of certain animals such as birds, fishes or insects. These coherent and synchronized structures are apparently produced without the active role of a leader in the grouping and it has been reported even for some microorganisms such as bacteria or red blood cells. In all the mentioned examples agents are surrounding with the moving fluid which can affect the collective behavior of the system. The collaborative flock of birds in windy conditions and the swimming of fishes in rivers or along oceanic currents are some examples. Moreover, micro-organisms produce different collective behavior in the... 

    Design and Fabrication of a Control Setup for a Miniature Mobile Robot Excited by Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Salehi, Mobin (Author) ; Zohoor, Hassan (Supervisor) ; Nejat Pishkenari, Hossein (Co-Supervisor)
    Abstract
    Humans can take lots of advantages from influencing on small particles. Since manipulation of micro sizes by humans or macro robots, due to their precession and size, is not possible, a new field of study, called Microrobotics, has been introduced. To better understand the working principles in small dimensions, we first need to know the governing physics laws. This step helps us to identify the dominant forces in the small dimensions, which, in turn, leads to better actuation of miniature robots. Because of the size of the miniature robots, one of the best actuation methods is the interaction of the magnetic field on magnetic dipoles. To use the magnetic field as an actuation force, the... 

    The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model

    , Article Engineering Fracture Mechanics ; Volume 112-113 , 2013 , Pages 97-125 ; 00137944 (ISSN) Broumand, P ; Khoei, A. R ; Sharif University of Technology
    2013
    Abstract
    An enriched-FEM technique is presented for the crack growth simulation in large deformation ductile fracture problems using a non-local damage-plasticity model in the framework of eXtended Finite Element Method (X-FEM). The Lemaitre damage-plasticity model is used to capture the material degradation effect, in which the non-locality is enforced by solving a Helmholtz type equation in combination with the governing equation of the system based on an operator-split technique. A convergence study is performed to investigate the performance of X-FEM technique in plasticity problems. The accuracy and effectiveness of proposed X-FEM damage-plasticity model are verified through several numerical... 

    A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation

    , Article Finite Elements in Analysis and Design ; Volume 62 , 2012 , Pages 18-27 ; 0168874X (ISSN) Naghdabadi, R ; Baghani, M ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing the logarithmic (or Hencky) strain as a more physical measure of strain, the time-dependent response of compressible viscoelastic materials is investigated. In this regard, we present a phenomenological finite strain viscoelastic constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The formulation is based on the multiplicative decomposition of the deformation gradient into elastic and viscoelastic parts, together with the use of the isotropic property of the Helmholtz strain energy function. Making use of a logarithmic mapping, we present an appropriate form of the proposed constitutive equations in the... 

    Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller

    , Article Mechatronics ; Volume 84 , 2022 ; 09574158 (ISSN) Khalesi, R ; Yousefi, M ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recent development in technology and improvement of manufacturing tools have accelerated the use of microrobots (MRs) in numerous areas such as micro sensing and medical applications. The ability to control multiple MRs simultaneously and independently could lead to higher performance, and even make new applications possible. In this paper, we have proposed a system for simultaneous and independent control of the position of multiple MRs in a plane. The system consists of 2N permanent magnets (PMs) with a circular arrangement in the plane around the workspace and a pair of Helmholtz coil to control N MRs. PMs are rotated by servomotors, and the coil aligns the orientation of the MRs normal... 

    Computation of the stresses in a moving reference system in a half-space due to a traversing time-varying concentrated load

    , Article Computers and Mathematics with Applications ; Volume 65, Issue 11 , 2013 , Pages 1849-1862 ; 08981221 (ISSN) Dehestani, M ; Vafai, A ; Mofid, M ; Szidarovszky, F ; Sharif University of Technology
    2013
    Abstract
    An analytical approach is employed to investigate the transient and steady-state stresses in an isotropic, homogeneous half-space subjected to moving concentrated loads with subsonic speeds. Applying the Stokes-Helmholtz resolution to the Navier's equation of motion for the half-space results in a system of wavetype partial differential equations. Based on the new moving coordinate system, a modified system of partial differential equations is obtained. Applying a concurrent two-sided and one-sided Laplace transformation, this system is modified to a system of ordinary differential equations, the solutions of which are obtained with respect to boundary conditions. The transformed transient... 

    2D numerical simulation of density currents using the SPH projection method

    , Article European Journal of Mechanics, B/Fluids ; Volume 38 , 2013 , Pages 38-46 ; 09977546 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Mahdinia, M ; Sharif University of Technology
    2013
    Abstract
    Density currents (DCs) or gravity currents are driven by gravity in a fluid environment with density variation. Smoothed Particle Hydrodynamics (SPH) has been proved to have capabilities such as free surface modeling and accurate tracking of the immiscible-fluids interface that can be useful in the context of gravity currents. However, SPH applications to gravity currents have been limited to often-coarse simulations of high density-ratio currents. In this work, the SPH projection method is tried to solve currents with very low density-ratios (close to one), at a resolution, that captures the Kelvin-Helmholtz instabilities at the fluids interface. Existing implementations of the SPH... 

    A combined first principles and analytical treatment for determination of the surface elastic constants: Application to Si(001) ideal and reconstructed surfaces

    , Article Philosophical Magazine Letters ; Volume 92, Issue 1 , Sep , 2012 , Pages 7-19 ; 09500839 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    Behavior of nanostructures, which are characterized by a large surface-to-volume ratio, is greatly influenced by their surface parameters, such as surface elastic moduli tensor. Accurate determination of the surface elastic constants by first principles is of particular interest. To this end, through consideration of the fundamental thermodynamic arguments for free solid surfaces, an analytical formulation for the change in specific Helmholtz surface free energy is developed. Relating this formulation to the corresponding energy calculated via first principles leads to the determination of the surface elastic moduli tensor. The surface mechanical properties, namely surface energy, surface... 

    Stability and size-dependency of temperature-related Cauchy-Born hypothesis

    , Article Computational Materials Science ; Volume 50, Issue 5 , March , 2011 , Pages 1731-1743 ; 09270256 (ISSN) Khoei, A. R ; Ghahremani, P ; Abdolhosseini Qomi, M. J ; Banihashemi, P ; Sharif University of Technology
    2011
    Abstract
    In continuum mechanics, the constitutive models are usually based on the Cauchy-Born (CB) hypothesis which seeks the intrinsic characteristics of the material via the atomistic information and it is valid in small deformation. The main purpose of this paper is to investigate the temperature effect on the stability and size-dependency of Cauchy-Born hypothesis. Three-dimensional temperature-related Cauchy-Born formulations are developed for crystalline structure and the stability and size-dependency of temperature-related Cauchy-Born hypothesis are investigated by means of direct comparison between atomistic and continuous mediums. In order to control the temperature effect, the Nose-Hoover... 

    Steady-state stresses in a half-space due to moving wheel-type loads with finite contact patch

    , Article Scientia Iranica ; Volume 17, Issue 5 A , SEPTEMBER-OCTOBER , 2010 , Pages 387-395 ; 10263098 (ISSN) Dehestani, M ; Vafai, A ; Mofid, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the steady-state stresses in a homogeneous isotropic half-space under a moving wheel-type load with constant subsonic speed, prescribed on a finite patch on the boundary, are investigated. Navier's equations of motion in 2D case were modified via Stokes-Helmholtz resolution to a system of partial differential equations. A double Fourier-Laplace transformation procedure was employed to solve the system of partial differential equations in a new moving reference system, regarding the boundary conditions. The effects of force transmission from the contact patch to the half-space have been considered in the boundary conditions. Utilizing a property of Laplace transformation leads... 

    Comparison of noise reduction techniques in RF SQUID magnetic detection systems

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 446-449 ; 9781424467600 (ISBN) Sadeghi Jahed, N. M ; Sarreshtedari, F ; Forooghi, F ; Fardmanesh, M ; Schubert, J ; Banzet, M ; Sharif University of Technology
    Abstract
    The noise level of the magnetometer and gradiometer RF SQUIDs were investigated using different shielding methods. The used methods include different active and passive shielding, such as Helmholtz configurations, locally compensation coils, superconducting bulks and μ-metal shields. For the passive shielding approach, using FEM simulation we have investigated the shielding effectiveness of superconducting bulks versus the use of μ-metal shielding. The superconducting shield is a YBCO circular bulk, which was made using melt-texture method and located in a distance in front of the SQUID. In this work the results of these shielding methods are presented and compared, while their effectiveness...