Search for: hematocrit
0.004 seconds

    Simulation of the Influence of Hypertension on Low Density Lipoprotein (Ldl) Permeation into Multilayer Coronary Bifurcation

    , M.Sc. Thesis Sharif University of Technology Moniri Piri, Mohammad (Author) ; Firoozabadi, Bahar (Supervisor)
    Atherosclerosis, due to the penetration of low-density lipoprotein particles (LDL) into the arterial wall, is one of the most common and death-leading diseases in today's world. Due to its importance, extensive research has been conducted on the factors that affect this disease. In this thesis, a numerical study of the effects of Wall Shear Stress (WSS), non-Newtonian behavior of blood, different hematocrit values, and blood pressure on LDL permeation through the artery wall layers are investigated in a 4-layer wall model of a coronary bifurcation. To obtain the velocity and concentration fields in the domain, momentum, Brinkman, and mass transport equations are solved in the lumen and wall... 

    The effect of hematocrit and nanoparticles diameter on hemodynamic parameters and drug delivery in abdominal aortic aneurysm with consideration of blood pulsatile flow

    , Article Computer Methods and Programs in Biomedicine ; Volume 195 , October , 2020 Jafarzadeh, S ; Nasiri Sadr, A ; Kaffash, E ; Goudarzi, S ; Golab, E ; Karimipour, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Background and Objective: The present article has simulated to investigate the efficient hemodynamic parameters, the drug persistence, and drug distribution on an abdominal aortic aneurysm. Methods: Blood as a non-Newtonian fluid enters the artery acting as a real pulse waveform; its behavior is dependent on hematocrit and strain rate. In this simulation of computational fluid dynamic, magnetic nanoparticles of iron oxide which were in advance coated with the drug, are injected into the artery during a cardiac cycle. A two-phase model was applied to investigate the distribution of these carriers. Results: The results are presented for different hematocrits and the nanoparticle diameter. It... 

    A mechanobiological mathematical model of liver metabolism

    , Article Biotechnology and Bioengineering ; Volume 117, Issue 9 , 5 June , 2020 , Pages 2861-2874 Nikmaneshi, M. R ; Firoozabadi, B ; Munn, L. L ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    The liver plays a complex role in metabolism and detoxification, and better tools are needed to understand its function and to develop liver-targeted therapies. In this study, we establish a mechanobiological model of liver transport and hepatocyte biology to elucidate the metabolism of urea and albumin, the production/detoxification of ammonia, and consumption of oxygen and nutrients. Since hepatocellular shear stress (SS) can influence the enzymatic activities of liver, the effect of SS on the urea and albumin synthesis are empirically modeled through the mechanotransduction mechanisms. The results demonstrate that the rheology and dynamics of the sinusoid flow can significantly affect... 

    Fluid particle diffusion through high-hematocrit blood flow within a capillary tube

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 170-175 ; 00219290 (ISSN) Saadatmand, M ; Ishikawa, T ; Matsuki, N ; Jafar Abdekhodaie, M ; Imai, Y ; Ueno, H ; Yamaguchi, T ; Sharif University of Technology
    Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of...