Loading...
Search for: high-strength-concrete--hsc
0.006 seconds

    Experimental Investigation on Effects of Hybrid Fibers on Rheological, Mechanical, and Durability Properties of High-Strength SCC

    , M.Sc. Thesis Sharif University of Technology Tabatabaeian, Mojtaba (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The aim of the present study is to investigate the effects of using hybrid fibers on rheological, mechanical and durability properties of the high-strength Self-Consolidating Concrete (SCC). For this purpose, two types of fibers including hooked-end steel fibers and polypropylene fibers were used. In this study, a total of eleven mixtures were used: one as a control mix, one containing 0.5% steel fibers, four containing 0.5% hybrid fibers (steel and polypropylene), one containing 1.0% steel fibers and the four containing 1.0% hybrid fibers (steel and polypropylene). For investigating the rheological properties, slump flow, J-ring and V-funnel tests were performed. Mechanical properties were... 

    Numerical Analysis on Flexural Behavior of Concrete Beams Reinforced with FRP bars

    , M.Sc. Thesis Sharif University of Technology Sabeti, Alireza (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The main problem of steel-reinforced concrete structures is corrosion of steel reinforcements which leads to premature failure of the concrete structures. This problem costs a lot annually to rehabilitate and repair these structures. In order to improve the longterm performance of reinforced concrete structures and for preventing this corrosion problem, Fiber Reinforced Polymer (FRP) bars can be substituted of conventional steel bars for reinforcing concrete structures. This study is a numerical study to evaluate structural behavior of the simply supported concrete beams reinforced with FRP bars in comparison with steel-reinforced concrete beams. The commercial Finite Element Modeling... 

    Influence of Compressive GFRP bars on Flexural Performance of Reinforced Concrete Beams

    , M.Sc. Thesis Sharif University of Technology Hassanpour, Sina (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    This study inspects the flexural response of RC beams at the presence of compressive GFRP bars as well as tensile bars. Total of 9 reinforced beams were investigated. Three values of tensile reinforcement percentage were considered. For each tensile reinforcement value, three types of compressive reinforcement were taken into account which are classified into zero compressive bars, less than tensile reinforcement value and similar to tensile reinforcement value. The concrete was used in this study is C45 and as a constant parameter.Specimens were tested with four-point bending method using the actuator equipped at the strong floor laboratory to attain maximum flexural strength and... 

    Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties

    , Article Journal of Building Engineering ; Volume 26 , 2019 ; 23527102 (ISSN) Zareei, S. A ; Ameri, F ; Bahrami, N ; Shoaei, P ; Musaeei, H. R ; Nurian, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper investigated the combined utilization of recycled waste ceramic aggregate (RWCA) and waste carpet fibers (WCFs) in high strength concrete (HSC). Concrete mixes containing different percentages of RWCA including 20%, 40%, 60% (by weight) as partial replacement of natural coarse aggregate (NCA) were prepared. To enhance the tensile and flexural strength of concrete, 1.0% (by volume) WCF was added to the mixes. The slump and density of the fresh concrete were evaluated, both of which demonstrated a decreasing trend with incorporation of RWCA and WCF. With regard to the hardened concrete, replacing 40% of NCA with RWCA led to the optimum mechanical properties and increased the... 

    Performance of sustainable high strength concrete with basic oxygen steel-making (BOS)slag and nano-silica

    , Article Journal of Building Engineering ; Volume 25 , 2019 ; 23527102 (ISSN) Zareei, S. A ; Ameri, F ; Bahrami, N ; Shoaei, P ; Moosaei, H. R ; Salemi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study presents the results of an experimental evaluation of the performance of high strength concrete (HSC)with basic oxygen steel-making (BOS)slag and nano-silica respectively used as a partial replacement of sand and cement. The properties of fresh and hardened concrete specimens containing 25%, 50%, 75%, and 100% BOS as partial replacement of sand and 2% of cement replaced with nano-silica were evaluated. According to the results, concrete samples containing nano-silica with higher BOS percentages, demonstrated improvements in strength and durability properties, while workability was reduced. For example, at 50% BOS content, about 18% increase in compressive strength and 50%...