Loading...
Search for: high-temperature-condition
0.007 seconds

    Using sensitivity analysis and gradual evaluation of ignition delay error to produce accurate low-cost skeletal mechanisms for oxidation of hydrocarbon fuels under high-temperature conditions

    , Article Energy and Fuels ; Volume 31, Issue 10 , 2017 , Pages 11234-11252 ; 08870624 (ISSN) Shakeri, A ; Mazaheri, K ; Owliya, M ; Sharif University of Technology
    Abstract
    Three-dimensional thermo-hydrodynamic analysis of gas turbine combustion chambers is of great importance in the power generation industry to achieve higher efficiency and reduced emissions. However, it is prohibitive to use a comprehensive full-detailed mechanism in their simulation algorithms because of the huge CPU time and memory space requirements. Many reduction approaches are available in the literature to remedy this problem. Here a new approach is presented to reduce large detailed or skeletal mechanisms of oxidation of hydrocarbon fuels to a low-cost skeletal mechanism. The method involves an integrated procedure including a Sensitivity Analysis (SA) and a procedure of Gradual... 

    A novel phenomenological constitutive model for Ti-6Al-4V at high temperature conditions and quasi-static strain rates

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 235, Issue 13 , 2021 , Pages 1831-1842 ; 09544100 (ISSN) Ashrafian, M. M ; Hosseini Kordkheili, A ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Phenomenological constitutive modeling of Ti-6Al-4V at temperatures between 923 and 1023 K under 0.0005–0.05 s−1 quasi-static rates is studied based on a phenomenological approach. For this purpose, the Johnson–Cook constitutive model is revisited. At low temperature conditions under moderate to high strain rates, the material’s stress–strain curves are the most similar to power-law function. Contrary to this, at high temperature conditions under low to moderate strain rates, the saturation-type function well describes the stress–strain curves. On the other hand, it is illustrated that the Johnson–Cook constitutive model is feeble to predict the material’s behavior correctly. Accordingly, in... 

    Dynamic modeling and optimization of asphaltene deposition in reservoir rocks using genetic algorithm

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 6 , 2010 , Pages 4291-4295 ; 9781617386671 (ISBN) Bagheri, M. B ; Kharrat, R ; Hemmatfar, V ; Ghotbi, C ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    Asphaltene deposition is a problematic challenge for oil production. Changes in key parameters like pressure and fluid composition during natural depletion and different gas injection scenarios may result in asphaltene precipitation and deposition. In this work, a model is developed by application of mass balance equations, momentum equation, asphaltene deposition and permeability reduction models. An algorithm is developed to perform iterative procedure to solve the numerical equations that contains highly coupled variables. Indeed, an equation is introduced to calculate the saturation of the precipitated asphaltene phase. Model parameters were determined by genetic algorithm which is a... 

    Application of a novel acrylamide copolymer containing highly hydrophobic comonomer as filtration control and rheology modifier additive in water-based drilling mud

    , Article Journal of Petroleum Science and Engineering ; Volume 180 , 2019 , Pages 747-755 ; 09204105 (ISSN) Davoodi, S ; Ramazani S.A, A ; Soleimanian, A ; Fellah Jahromi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Deep wells suffer from the instability and disintegration of natural polymers and other commonly used additives under high pressure and high temperature condition. As a result, serious problems such as hydraulic loss, stuck pipe, and high torque and drag are expected to take place which leads to a dramatic increase in cost and time. This study presents the functionality of a novel synthetic based acrylamide-styrene copolymer (SBASC) as a supersede additive for water-based drilling mud. First, the SBASC was synthesized using an emulsion polymerization process and its particle morphological and polymer chain structural properties were determined by Field Emission Scanning Electron Microscopy...