Loading...
Search for: high-themprature-gas-cooled-reactor--htgr
0.006 seconds

    Neutronic Simulation of Generation IV Prismatic High Temperature Reactors and Noise Analysis

    , Ph.D. Dissertation Sharif University of Technology Torabi Ardekani, Abbas (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    This thesis has been done with the goal of comprehensive neutronic calculation of a small size High Temperature Gas Cooled Reactor and HTTR was selected as a reference reactor for simulations. Calculations are divided into four parts of zero and full power stochastic calculations, deterministic calculations and noise analysis. In zero power calculations, an algorithm is proposed for modeling random arrangement of TRISO particles in the fuel compacts of HTTR. The effect of this arrangement on criticality calculations, i.e. effective multiplication factor and critical position of control rods, is then compared with regular arrangement. In the second part, full power calculations with the use... 

    Development of a Computer Code for Thermo Hydraulics Analysis of Prismatic High Temperature Gas Cooled Reactors

    , M.Sc. Thesis Sharif University of Technology Naderi, Mohammad Hossein (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Jafari, Jalil (Supervisor)
    Abstract
    A prismatic high temperature gas-cooled reactor (HTGR), which is a graphite moderated, helium-cooled reactor, is a promising candidate for next generation nuclear power plant in that it enables applications, such as hydrogen production or process heat for petrochemical by supplying heat with core outlet temperatures as high as 1000°C. A Thermal Hydraulic Analysis Code (THAC) for gas-cooled reactors has been developed. THAC implicitly solves heat transfer equation of fuel, graphite block and helium. Three types of fuel pins were considered; solid fuel pin, fuel pins with inside holes and annular fuels with coolant flow from its inside and outside surfaces. THAC predicts axial and radial... 

    Development of a Computer Code for Thermal Hydraulic Design of a High Temperature Gas Cooled Reactor Core

    , M.Sc. Thesis Sharif University of Technology Khosravi Mirzaee, Morteza (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Jafari, Jalil (Supervisor)
    Abstract
    High temperature gas cooled reactors (HTGR) are one of the most promising reactors in the new generation of world commercial reactors. They are divided into two main categories: Prismatic gas cooled reactors and pebble bed gas cooled reactors. These reactors have many advantages, such as inherent safety, high thermodynamic efficiency and the possibility of producing hydrogen. One of the most important challenges in developing these reactors is providing appropriate codes in design and simulating their performance. Two codes have been developed in this thesis. The first, THFAM, is a steady state thermal hydraulic code which helps in analyzing a fuel assembly. The second, named THCM is... 

    Thermal Hydraulic Analysis of Prismatic Htgr with Natural Convection Using Porous Media Approach (in Case of Lose of Forced Circulation Accident)

    , M.Sc. Thesis Sharif University of Technology Golshanee, Masoud (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    In this study, the thermal-hydraulic analysis of prismatic HTGR’s core with natural convection has been studied using porous media approach. VHTR are the new generation reactors which due to special neutron and thermo physical properties have highly inherent safety. In lose of forced circulation accident, decay heat is transferred from core to pressure vessel wall and then to water tubes in concrete wall at reactor cavity with conduction, convection and radiation automatically. In this case the high volume of decay heat is stored in graphite block with high thermal capacity and is prevented the instantaneous temperature rising.
    The aim of this study is justifying inherent safety of HTGR... 

    Neutronics Calculations of Prismatic High-temperature Gas Cooled Reactor by Deterministic Method Using DONJON and DRAGON Codes and Comparison with Results of Probabilistic Methods (Monte Carlo).

    , M.Sc. Thesis Sharif University of Technology Mansouri Hassan Abadi, Javad (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    HTGRs are considered as 4th generation reactors which have prominent characteristics such as inherent safety, lower safety costs, High efficiency and high temperature applications. the most important challenges in developing these reactors is providing appropriate codes in design, simulating their performance and analysis of them. In this thesis, a japanese prismatic HTTR reactor has been selected as a reference reactor and the neurotic’s calculations implementation studied at cold zero power (CZP) and hot full power (HFP) states using DRAGON cell calculation codes and DONJON core computations. At CZP state, One group and two group radial & axial flux distribution, control rod critical... 

    Thermohydraulic Analysis of High Temperature Gas-Cooled Reactors Using Porous Media Approach

    , Ph.D. Dissertation Sharif University of Technology Tabatabai Ghomsheh, Isar (Author) ; Nouri Borojerdi, Ali (Supervisor)
    Abstract
    High temperature modular reactors (HTR) are the most likely next generation reactors that will meet future energy needs. Their inherent safety is the most attractive feature of this type of reactors, and along with that, we can mention the ease of their design, operation and maintenance. Since the reactor is safe in the event of an accident, without activating any external source of security, this reactor is considered intrinsically safe. Despite this inherent property, the reactor is only affected by its physical characteristics, and therefore, many dangerous situations are prevented.The inherent safety feature of this reactor is completely dependent on its proper design. The power density...