Loading...
Search for: homogeneous-dispersions
0.004 seconds

    Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering

    , Article Journal of Biomaterials Applications ; Volume 36, Issue 5 , 2021 , Pages 803-817 ; 08853282 (ISSN) Shojarazavi, N ; Mashayekhan, S ; Pazooki, H ; Mohsenifard, S ; Baniasadi, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was... 

    Fatigue fracture of friction-stir processed Al-Al3Ti-MgO hybrid nanocomposites

    , Article International Journal of Fatigue ; Volume 87 , 2016 , Pages 266-278 ; 01421123 (ISSN) Sahandi Zangabad, P ; Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper presents experimental results on the fatigue properties of Al-matrix nanocomposites prepared by the friction stir processing (FSP) technique. An Al-Mg alloy (AA5052) with different amounts (∼2 and 3.5 vol%) of pre-placed TiO2 nanoparticles were FSPed up to 6 passes to attain homogenous dispersion of nano-metric inclusions. Microstructural studies by electron microscopic and electron back scattering diffraction (EBSD) techniques showed that nano-metric Al3Ti (50 nm), TiO2 (30 nm), and MgO (50 nm) particles were distributed throughout a fine-grained Al matrix (<2 μm). Consequently, a significant improvement in the tensile strength and hardness was attained. Uniaxial... 

    Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles

    , Article Ceramics International ; 2018 ; 02728842 (ISSN) Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Hybrid Cu-SiC composites have been highly considered in order to achieve a combination of electrical and thermal properties along with high strength and wear resistance. However, limited investigations have ever been conducted over the effects of using hybrid (combination of nano and micro size) particles on the wear resistance behavior of these composites. Hence, in the present study, Cu-SiC nanocomposite with 4 vol% nanosize and 4 vol% microsize SiC, and Cu-SiC microcomposite with 8 vol% micro- SiC were fabricated through mechanical milling and hot pressing process. Results revealed the homogeneous dispersion of SiC particles in the matrix, high densification, and ultrafine-grain matrix... 

    Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles

    , Article Ceramics International ; Volume 45, Issue 3 , 2019 , Pages 3276-3283 ; 02728842 (ISSN) Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Hybrid Cu-SiC composites have been highly considered in order to achieve a combination of electrical and thermal properties along with high strength and wear resistance. However, limited investigations have ever been conducted over the effects of using hybrid (combination of nano and micro size) particles on the wear resistance behavior of these composites. Hence, in the present study, Cu-SiC nanocomposite with 4 vol% nanosize and 4 vol% microsize SiC, and Cu-SiC microcomposite with 8 vol% micro- SiC were fabricated through mechanical milling and hot pressing process. Results revealed the homogeneous dispersion of SiC particles in the matrix, high densification, and ultrafine-grain matrix... 

    Fabrication of new magnetite-graphene nanocomposite and comparison of its laser-hyperthermia properties with conventionally prepared magnetite-graphene hybrid

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 572-581 ; 09284931 (ISSN) Tayyebi, A ; Moradi, S ; Azizi, F ; Outokesh, M ; Shadanfar, K ; Mousavi, S. S ; Sharif University of Technology
    Abstract
    A single step supercritical method was introduced for synthesis of “magnetite - reduced graphene oxide (M-rGO)” composite in supercritical methanol. Modified surface, smaller size, lesser cytotoxicity, and homogenous dispersion of Fe3O4 nanoparticles on the graphene surface were advantages of this new M-rGO composite in comparison to the materials synthesized by conventional wet chemical method (M-GO). Nanocomposites were injected in tissue equivalent phantoms of agarose gel in 10 mg/g dosage, and were irradiated by a 1600 mW laser beam at wavelength of 800–810 nm. The M-rGO and M-GO were found to be the most and the least efficient samples for increasing the temperature of the phantom. As... 

    Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process

    , Article Materials Science and Engineering A ; Volume 786 , 2020 Akbarpour, M. R ; Mousa Mirabad, H ; Khalili Azar, M ; Kakaei, K ; Kim, H .S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Hybrid-reinforced metals are novel composite materials in which nano-phases including nanoparticles and nanotubes/nanosheets are used simultaneously to reinforce metals or alloys to enhance physical, mechanical, wear and other properties. In this research, Cu/(CNT-SiC) hybrid nanocomposite was synthesized using flake powder metallurgy and spark plasma sintering method and the effects of hybrid reinforcements on microstructural, wear and corrosion properties of the developed material were investigated and compared with those of copper. Microstructural characterization showed reduction of average grain size from 419 to 307 nm and increase of low angle grain boundaries with the introduction and... 

    Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study

    , Article Materials Science and Engineering C ; Volume 33, Issue 4 , 2013 , Pages 2002-2010 ; 09284931 (ISSN) Abrishamchian, A ; Hooshmand, T ; Mohammadi, M ; Najafi, F ; Sharif University of Technology
    2013
    Abstract
    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%)...