Loading...
Search for: homogeneous-distribution
0.01 seconds

    The simultaneous determination of archie's parameters by application of modified genetic algorithm and hdp methods: A comparison with current methods via two case studies

    , Article Petroleum Science and Technology ; Volume 30, Issue 1 , Mar , 2011 , Pages 54-63 ; 10916466 (ISSN) Godarzi, A. A ; Najafi, I ; Najafi, A ; Ghazanfari, M. H ; Sharif University of Technology
    2011
    Abstract
    Although different procedures have been proposed to calculate the parameters of Archie's (1942) equation, most of them suffer from lack of accuracy because these are not solved simultaneously In this article, by applying two novel methods, a modified genetic algorithm (MGA) and homogeneous distribution of parameters (HDP), the above-mentioned unknown parameters were determined simultaneously. Furthermore, for two case studies using two data sets from Permian Glerito and Permian Clearfork reservoirs, a comparison is made between other methods (e.g., traditional graphical method and SmnaM; Frailey et al., 2001) and the proposed methods that demonstrated the greater accuracy of the two newly... 

    Characterization of the effect of disturbance on the hydro-mechanical behavior of a highly collapsible loessial soil

    , Article Unsaturated Soils: Research and Applications - Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014 ; Vol. 1, issue , 2014 , p. 261-266 Haeri, S. M ; Khosravi, A ; Ghaizadeh, S ; Garakani, A. A ; Meehan, C. L ; Sharif University of Technology
    Abstract
    Highly collapsible loessial soils are characterized by an open void structure that can experience significant settlement upon loading. In the field, these partially saturated Aeolian deposits are particularly susceptible to wetting-induced collapse. Due to difficulties in preparing undisturbed specimens from highly collapsible soils, previous studies have generally performed laboratory tests on reconstituted specimens with different water contents and densities, and the effect of disturbance on the initial state of the soil was ignored. Disturbance in highly collapsible soil specimens may significantly affect the natural composition of the soil matrix, the non-homogeneous distribution of... 

    Deformation behavior of AA2017-SiCp in warm and hot deformation regions

    , Article Materials and Design ; Volume 67 , February , 2015 , Pages 318-323 ; 02613069 (ISSN) Serajzadeh, S ; Ranjbar Motlagh, S ; Mirbagheri, S. M. H ; Akhgar, J. M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this work, the flow stress behavior of a metal matrix composite AA2017-10% SiCp was studied by means of the uni-axial compression test. The composite was first produced by stir casting technique and then, hot extrusion with the ratio of 18:1 was carried out to achieve a microstructure with a homogeneous distribution of SiC particles. In the next stage, the isothermal compression tests were conducted on the cylindrical specimens up to the true strain of 0.6. The experiments were performed at temperatures between room temperature to 400°C and strain rates of 0.003, 0.03 and 0.3s-1. Negative strain rate sensitivity was observed in the temperatures less than 250°C indicating the occurrence of... 

    Electrical annealing of severely deformed copper: microstructure and hardness

    , Article International Journal of Minerals, Metallurgy and Materials ; Volume 24, Issue 10 , 2017 ; 16744799 (ISSN) Nobakht, S ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    Commercial pure copper sheets were severely deformed after primary annealing to a strain magnitude of 2.32 through constrained groove pressing. After induction of an electrical current, the sheets were heated for 0.5, 1, 2, or 3 s up to maximum temperatures of 150, 200, 250, or 300°C. To compare the annealing process in the current-carrying system with that in the current-free system, four other samples were heated to 300°C at holding times of 60, 90, 120, or 150 s in a salt bath. The microstructural evolution and hardness values of the samples were then investigated. The results generally indicated that induction of an electrical current could accelerate the recrystallization process by... 

    A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites

    , Article International Journal of Minerals, Metallurgy and Materials ; Volume 27, Issue 8 , 2020 , Pages 1133-1146 Bagheri, B ; Abbasi, M ; Abdollahzadeh, A ; Kokabi, A. H ; Sharif University of Technology
    University of Science and Technology Beijing  2020
    Abstract
    Friction stir processing (FSP) can be used to improve surface composites. In this study, a modified method of FSP called friction stir vibration processing (FSVP) was applied to develop a surface composite on AZ91 magnesium alloy. In this technique, the workpiece is vibrated normal to the processing direction. The results illustrated that compared with the FSP method, the FSVP caused a better homogeneous distribution of SiC particles in the microstructure. The results also showed that matrix grains of friction stir vibration processed (FSV-processed) samples ((26.43 ± 2.00) µm) were finer than those of friction stir processed (FS-processed) specimens ((39.43 ± 2.00) µm). The results... 

    Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets

    , Article Journal of Alloys and Compounds ; Volume 904 , 2022 ; 09258388 (ISSN) Soltani, H ; Bahiraei, H ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the effect of electrodeposition time on the super-capacitive performance of three-dimensional (3D) MnO2/g-C3N4 heterostructured electrodes was investigated. MnO2 nanoparticles were electrodeposited on the g-C3N4 nanosheets drop-casted on the Ni foam substrate. The microstructural analysis, carried out by FE-SEM and TEM, confirmed the homogeneous distribution of MnO2 nanoparticles on g-C3N4 nano-sheet layers. The electrochemical capacitive performances of the MnO2/g-C3N4 electrodes were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS). The obtained results suggested that the supercapacitor (SC) performance of all... 

    Synthesis and spectral properties of Nd-doped glass-ceramics in SiO 2-CaO-MgO system prepared by sol-gel method

    , Article Journal of Rare Earths ; Volume 31, Issue 6 , 2013 , Pages 595-599 ; 10020721 (ISSN) Masoud, E ; Zohreh, H ; Ali, N ; Sharif University of Technology
    2013
    Abstract
    SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd 3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2·4H2O, Mg(NO 3)2·6H2O, Nd(NO3) 3·6H2O, ethanol, distilled water, and HNO 3 were used as starting materials. The synthesized powder's properties were examined with simultaneous thermal analysis (STA), X-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM) analysis. The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content. Regarding XRD patterns of glass samples, Nd was found to act as an intermediate oxide in glass matrix. The XRD... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites

    , Article Materials and Design ; Volume 52 , 2013 , Pages 881-887 ; 02641275 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6. vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4. vol%; then they... 

    Fabrication of AZ31/Al2O3 nanocomposites by friction STIR processing

    , Article Reviews on Advanced Materials Science ; Volume 28, Issue 1 , 2011 , Pages 85-89 ; 16065131 (ISSN) Azizieh, M ; Kim, H. S ; Kokabi, A. H ; Abachi, P ; Shahraki, B. K ; Sharif University of Technology
    2011
    Abstract
    The aim of this paper is to fabricate AZ31/Al2O3 nanocomposites by friction stir processing (FSP). Due to severe plastic deformation, dynamic recrystallization, and grain growth retardation by nanoparticles during the FSP processing, ultrafine grained microstructures with homogeneous distribution of the nanoparticles were produced. With increasing rotational speed, as a result of the increased plastic deformation and heat generation, increased grain size of the matrix, and simultaneously shattering effect of rotation cause a uniform nanoparticle distribution. By the large plastic deformation, texture of the matrix evolved and especially the (0002) basal plane was developed  

    A new method for fabrication of in situ Al/Al3Ti-Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite

    , Article Journal of Alloys and Compounds ; Volume 643 , 2015 , Pages 64-73 ; 09258388 (ISSN) Azarniya, A ; Madaah Hosseini, H.R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this research, the possibility that nanostructured aluminium titanate (tialite) powder can be used as a chemical source for producing Al2O3 and Al3Ti precipitates in aluminium matrix composites has been investigated. Optical microscopy, FE-SEM, XRD, DSC and TGA examinations were used to characterize the synthesized specimens. The results showed that a porous structure and inferior mechanical properties were obtained in as-sintered samples. The further thermomechanical treatments i.e. cyclic rolling and hot extrusion improved the mechanical properties and led to a dense microstructure with a homogeneous distribution of Al2O3 and... 

    Microstructural characterization and enhanced hardness, wear and antibacterial properties of a powder metallurgy SiC/Ti-Cu nanocomposite as a potential material for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 8 , 2019 , Pages 10603-10611 ; 02728842 (ISSN) Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, SiC/Ti–Cu nanocomposite was fabricated by mechanical alloying and sintering process. Effects of SiC nano-reinforcement on phase transformation, microstructure and tribological and antibacterial properties Ti–Cu intermetallic alloy were studied. The microstructure of the powders and sintered materials was investigated using X-ray diffraction, and scanning/transmission electron microscopy. The results exhibited the formation of major TiCu and TiCu 4 , and minor Ti 2 Cu and Ti 2 Cu 3 nanocrystalline phases in the sintered Ti–Cu and SiC/Ti–Cu samples. With the addition of the nanoparticles, the amount of TiCu 4 phase increased. Reinforcing Ti–Cu intermetallic alloy by SiC... 

    Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    , Article Materials Science and Engineering A ; Volume 527, Issue 1-2 , 2009 , Pages 98-102 ; 09215093 (ISSN) Nematzadeh, F ; Akbarpour, M. R ; Kokabi, A. H ; Sadrnezhaad, S. k ; Sharif University of Technology
    Abstract
    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding...