Loading...
Search for: horizontal-axis
0.01 seconds

    Wind turbine power improvement utilizing passive flow control with microtab

    , Article Energy ; Volume 150 , 2018 , Pages 575-582 ; 03605442 (ISSN) Ebrahimi, A ; Movahhedi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the effect of deploying microtabs on performance improvement of a horizontal axis wind turbine blade is numerically investigated in three-dimensions. The NREL Phase VI, a stall-regulated upwind wind turbine, is used as the baseline case. Different cases are considered to investigate the effects of spanwise location as well as the height variation of tabs along the blade span, on the flow over the rotor blade. In all cases, the tab is located at 95% chord of the airfoil section on the lower surface of the blade. Results reveal that locating microtabs at the outboard part of the blade has a greater impact on the rotor performance than the inboard part. However, both cases... 

    Analysis of Blades Surface Effect on Wind Turbine Performance

    , M.Sc. Thesis Sharif University of Technology Sabzehparvar, Amir Ali (Author) ; Sadr Hosseini, Hani (Supervisor) ; Sabzehparvar, Mahdi (Supervisor)
    Abstract
    The development of wind turbine blades model that accurately predict wind turbine thrust in a full range of applicable wind speed has provided a powerful and reliable source for simulation of horizontal axis wind turbine power and thrust force that serves as a valuable tool for wind turbine design and performance analysis. A single-element blade model that reduces the rotor blade characteristics to a lift and drag coefficient vs. angle-of-attack formulation was found to describe accurately the rotor characteristics over a wide operating range. Measurements of wind speed and altitude of wind turbine installation location, rotor speed, and provided thrust is within less than 2% over a wide... 

    A Pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 136 , January , 2015 , Pages 62-72 ; 01676105 (ISSN) Mortazavi, S. M ; Soltani, M. R ; Motieyan, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study a multi-objective genetic algorithm is utilized to obtain a Pareto optimal set of solutions for geometrical characteristics of airfoil sections for 10-meter blades of a horizontal axis wind turbine. The performance of the airfoil sections during the process of energy conversion is evaluated deploying a 2D incompressible unsteady CFD solver and the second law analysis. Artificial neural networks are trained employing CFD obtained data sets to represent objective functions in an algorithm which implements exergetic performance and integrity characteristics as optimization objectives. The results show that utilizing the second law approach along with Pareto optimality concept... 

    Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators

    , Article Energy Conversion and Management ; Volume 146 , 2017 , Pages 96-106 ; 01968904 (ISSN) Ebrahimi, A ; Movahhedi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study numerically investigates the feasibility of using multiple dielectric barrier discharge (multi-DBD) plasma actuators as a novel approach for active flow control over a large horizontal axis wind turbine rotor. The National Renewable Energy Laboratory 5 MW offshore wind turbine is used as the baseline case. This turbine uses pitch control system to adjust the generated power above its rated wind speeds, but at lower speeds, this system remains inactive. In this paper, the operational condition speed is considered lower than the rated wind speed. The mathematical electro-static model is implemented to simulate the effects of plasma actuator on the external flow and the... 

    Unsteady Aerodynamic Simulation of Horizontal Axis Wind Turbine (HAWT)

    , M.Sc. Thesis Sharif University of Technology Radmanesh, Amirreza (Author) ; Abbaspour, Madjid (Supervisor) ; Soltani, Mohamad Reza (Co-Advisor)
    Abstract
    The ultimate aim of this research is optimizing high- performance Horizontal Axis Wind Turbine (HAWT) associated with using Computational fluid dynamics (CFD) to predict the flow behavior over wind turbine blades. Computational prediction of the flow over wind turbines is a challenging numerical problem because of the complicated aerodynamics and large variation in length scales. Phenomena such as; the unsteady flow, vortex shedding of the blade tips, flow separation, complicated blade geometry due to variable twist and chord and changes in angle of attack, and highly turbulent flow over blade sections makes CFD prediction challenging, as well as interesting. The goal is to gain an in depth... 

    Model Predictive Control of the Wind Turbines with Uncertainties for the Switching between Operating Regions

    , M.Sc. Thesis Sharif University of Technology Nasajian Moghaddam, Amir Hossein (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    Through the last decades, due to environmental issues and to confine CO2 emission and also dependency to the fossil fuels, renewable energy resources has been developed. It’s been expected up to 2035, the renewable energy resources will be scaled three times and among those resources, the wind energy will stand prominently. Out of this king of renewable resource, the horizontal wind turbine has been subjected in this research.The focus of is to design the controller in third of a 2 MW turbine operation by which stable rotor speed and nominal output power to be attained. Besides, to enhance the accuracy of the windturbine profiles, the TURBSIM software (At the National Renewable Energy... 

    Aerodynamic Performance Improvement of Megawatt Wind Turbine Rotor Using Plasma Actuator

    , M.Sc. Thesis Sharif University of Technology Movahhedi, Mohammad Reza (Author) ; Ebrahimi, Abbas (Supervisor)
    Abstract
    For validation of simulation, plasma actuator was modelled on a flat plate in quiescent flow, which is result in low-speed jet near the wall. The results were compared with similar model and were showed good agreement with them. After that, blade was modelled in three-dimensional manner with MRF technique and periodic method and the results were validated in clean situation (absence of plasma). In the following, turbine was analysed with a code, which was written in MATLAB software based on BEM method and the results were compared with present CFD simulation. Then, plasma actuator was used in chordwise in parts of the blade to improve wind turbine performance. Also it was used in spanwise... 

    Promising technology for electronic cooling: Nanofluidic micro pulsating heat pipes

    , Article Journal of Electronic Packaging, Transactions of the ASME ; Volume 135, Issue 2 , 2013 ; 10437398 (ISSN) Jahani, K ; Mohammadi, M ; Shafii, M. B ; Shiee, Z ; Sharif University of Technology
    2013
    Abstract
    Currently, the thermal management of microelectromechanical systems (MEMS) has become a challenge. In the present research, a micro pulsating heat pipe (MPHP) with a hydraulic diameter of 508 lm, is experimented. The thermal performance of the MPHP in both the transient and steady conditions, the effects of the working fluid (water, silver nanofluid, and ferrofluid), heating power (4, 8, 12, 16, 20, 24, and 28 W), charging ratio (20, 40, 60, and 80%), inclination angle (0 deg, 25 deg, 45 deg, 75 deg, and 90 deg relative to horizontal axis), and the application of magnetic field, are investigated and thoroughly discussed. The experimental results show that the optimum charging ratio for water... 

    Thermal performance of an open loop pulsating heat pipe with ferrofluid (Magnetic Nano-Fluid)

    , Article ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012 ; 2012 , Pages 185-190 ; 9780791854778 (ISBN) Taslimifar, M ; Mohammadi, M ; Saidi, M. H ; Afshin, H ; Shafii, M. B ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Abstract
    In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location... 

    Airborne turbines: The impact of scaling on system performance

    , Article ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017, 3 November 2017 through 9 November 2017 ; Volume 6 , 2017 ; 9780791858417 (ISBN) Mohafez, M. H ; Goudarzi, N ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    Tethered airborne wind energy systems are among emerging renewable energy technologies in recent years. These systems can harness greater power densities at higher altitudes with lower costs of installation and energy production in comparison with those from conventional ground-based energy harnessing technologies. A Buoyant Airborne Turbine (BAT) as a flying aerostat has a horizontal axis wind turbine within its shell and can elevate up to 600m. There are a number of pertinent parameters such as BAT configurations/component dimensions or its aerodynamic characteristics that impact the system total power performance. Identifying the optimum values of these parameters by conducting... 

    Effects of Wind Shear Flow on the Aeroelastic Performance of a Large-Scale Wind Turbine with UBEM

    , M.Sc. Thesis Sharif University of Technology Hossein, Amir Hossein (Author) ; Ebrahimi, Abbas (Supervisor) ; Taeibi-Rahni, Mohamad (Supervisor) ; Rezaei, Mohamad Mahdi (Co-Supervisor)
    Abstract
    Study of the structural flexibility of large-scale wind turbine components on aeroelastic performance is important under the existence of critical atmospheric conditions. Prediction and control the critical deformations, identifying maximum local deformation and modeling the forces involved, are required. Aeroelasticity analysis is a suitable method for studying the coupling effects of wind turbine aerodynamics, dynamics and structures. This research has been done by modeling wind turbine components including blades, hub, nacelle and tower, taking into account aerodynamic couplings, dynamics and structures. Considering the large scale of reference wind turbine, nonlinear equations have added... 

    Aeroelastic Analysis of Horizontal Axis Wind Turbine Based on Actuator Disk Method

    , M.Sc. Thesis Sharif University of Technology Nozari, Mostafa (Author) ; Ebrahimi, Abbas (Supervisor) ; Rezaei, Mohammad Mahdi (Co-Advisor)
    Abstract
    The issue of solid and fluid interaction in horizontal axis wind turbines with diameter of more than 120 meters is one of the most important researching subjects of this type of turbines. This issues needs quick and exact solutions because of the high computational cost of fluid and structural domains.In this research a quick method with acceptable accuracy has been suggested which is based on computational fluid dynamic to examine the aeroelastic behavior of rotor and wind turbine tower. The actuator disc method in two domains of axisymmetric and three-dimensional has been used to compute aerodynamic forces. For this purpose a code has been written in C++ to set down virtual momentum on... 

    Site specific optimization of wind turbines energy cost: Iterative approach

    , Article Energy Conversion and Management ; Volume 73 , September , 2013 , Pages 167-175 ; 01968904 (ISSN) Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum... 

    Enhancement of a horizontal axis wind turbine airfoil performance using single dielectric barrier discharge plasma actuator

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; 2020 Fadaei, M ; Davari, A. R ; Sabetghadam, F ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Wind turbines are of the most promising devices to cut down carbon emissions. However, some phenomena that adversely affect their performance are inevitable. The aim of the present paper is to investigate flow separation prevention exploiting leading edge (LE) single dielectric barrier discharge plasma actuator (SDBD-PA) on an airfoil belonging to a section of a locally developed wind turbine. The numerical results of the surface pressure distribution over the airfoil were compared with the experimental measurements carried out by the authors on the same blade section, and good agreement was found between numerical and experimental data for both plasma-OFF and plasma-ON cases. An in-depth... 

    Scheduling of H∞ controllers in horizontal axis wind turbines

    , Article Control Engineering Practice ; Volume 102 , 2020 Poureh, A ; Nobakhti, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Safe pitch angle-based pole–zero–gain scheduling, and controller blending of H∞ controllers for a variable-speed variable-pitch wind turbine in the full load region are introduced in this paper. The design methodology ensures proper model reduction and modification, canonical controller realization, and cancellation of the hidden coupling terms that emerge from these scheduling procedures to maintain the stability of the closed–loop dynamics during wind turbine operation. In contrast to previous multi-model designs that either involve scheduling of complex transfer functions or depend on less-reliable wind speed estimations, in the presented framework only a portion of the controller is... 

    Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 6 , 2016 , Pages 1525-1540 ; 17351472 (ISSN) Abbaspour, M ; Radmanesh, A. R ; Soltani, M. R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies 
    Abstract
    The first notable megawatt class wind turbine, which was the pioneer of improvement in the blade performance in large wind turbines, appeared in Vermont. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. In this study, in order to indicate the best airfoil profile for the optimum performance in different sections of a blade, five popular airfoils, including S8xx, FFA and AH series, were studied. On the large-scale profile, shear stress transport K–ω model was applied for the simulation of horizontal axis wind turbines for different wind speeds. The aerodynamic simulation was accomplished using computational fluid dynamic method, which in turn is based... 

    Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes

    , Article Energy ; Volume 145 , 2018 , Pages 261-275 ; 03605442 (ISSN) Ebrahimi, A ; Sekandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, the aeroelastic analysis of a large scale wind turbine rotor is performed with the aim of studying transient performance of turbine in extreme wind conditions, such as wind gusts and rapid yaw changes. The effect of the presence and/or lack of blade pitch control system on output power, rotor thrust, and blade deformation in sudden change of wind speed are investigated. The NREL 5 MW offshore wind turbine is used as the baseline case. In this regard, the modal approach is implemented for modeling the flexible blade structure with tension, bending and torsion degrees of freedom. The unsteady vortex lattice method is employed to obtain the aerodynamic loads. Moreover, the...