Loading...
Search for: human-motions
0.007 seconds

    A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors

    , Article Advances in Colloid and Interface Science ; Volume 298 , 2021 ; 00018686 (ISSN) Rahmani, P ; Shojaei, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Over the past few years, development of wearable devices has gained increasing momentum. Notably, the demand for stretchable strain sensors has significantly increased due to many potential and emerging applications such as human motion monitoring, prosthetics, robotic systems, and touch panels. Recently, hydrogels have been developed to overcome the drawbacks of the elastomer-based wearable strain sensors, caused by insufficient biocompatibility, brittle mechanical properties, complicated fabrication process, as the hydrogels can provide a combination of various exciting properties such as intrinsic electrical conductivity, suitable mechanical properties, and biocompatibility. There are... 

    Human arm motion tracking by inertial/magnetic sensors using unscented Kalman filter and relative motion constraint

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 90, Issue 1-2 , May , 2018 , Pages 161-170 ; 09210296 (ISSN) Atrsaei, A ; Salarieh, H ; Alasty, A ; Abediny, M ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Human motion tracking has many applications in biomedical and industrial services. Low-cost inertial/magnetic sensors are widely used in human motion capture systems to obtain the orientation of the human body segments. In this paper, we have presented a quaternion-based unscented Kalman filter algorithm to fuse inertial/magnetic sensors measurements for tracking human arm movements. In order to have a better estimation of the orientation of the forearm and the upper arm, a constraint equation was developed based on the relative velocity of the elbow joint with respect to the inertial sensors attached to the forearm and the upper arm. Also to compensate for fast body motions, we adapted the... 

    Implementation of optical tracker system for marker-based human motion tracking

    , Article 15th IASTED International Conference on Applied Simulation and Modelling, Rhodes, 26 June 2006 through 28 June 2006 ; Volume 2006 , 2006 , Pages 252-257 ; 0889865612 (ISBN); 9780889865617 (ISBN) Colahi, A ; Hoviatalab, M ; Rezaeian, T ; Alizadeh, M ; Bostan, M ; Sharif University of Technology
    2006
    Abstract
    In this paper a complete design of a high speed optical human motion tracking system has been described for biomechanical human motion analysis and animation craft applications. The main core of the image processing unit that is implemented by the differential algorithm procedure and some intelligent and conservative procedures that facilitate the search algorithm have also been proposed and implemented for the processing of human motions tracking images. In the next step an optimized modified direct linear transformation (MDLT) method has been used to reconstruct 3D locations of markers as an input data for animation unit. The low computational cost and the high precision in detecting and... 

    Human arm motion tracking by inertial/magnetic sensors using unscented kalman filter and relative motion constraint

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; 2017 , Pages 1-10 ; 09210296 (ISSN) Atrsaei, A ; Salarieh, H ; Alasty, A ; Abediny, M ; Sharif University of Technology
    Abstract
    Human motion tracking has many applications in biomedical and industrial services. Low-cost inertial/magnetic sensors are widely used in human motion capture systems to obtain the orientation of the human body segments. In this paper, we have presented a quaternion-based unscented Kalman filter algorithm to fuse inertial/magnetic sensors measurements for tracking human arm movements. In order to have a better estimation of the orientation of the forearm and the upper arm, a constraint equation was developed based on the relative velocity of the elbow joint with respect to the inertial sensors attached to the forearm and the upper arm. Also to compensate for fast body motions, we adapted the... 

    Design of a marker-based human motion tracking system

    , Article Biomedical Signal Processing and Control ; Volume 2, Issue 1 , 2007 , Pages 59-67 ; 17468094 (ISSN) Kolahi, A ; Hoviattalab, M ; Rezaeian, T ; Alizadeh, M ; Bostan, M ; Mokhtarzadeh, H ; Sharif University of Technology
    2007
    Abstract
    In this paper a complete design of a high speed optical motion analyzer system has been described. The main core of the image processing unit has been implemented by the differential algorithm procedure. Some intelligent and conservative procedures that facilitate the search algorithm have also been proposed and implemented for the processing of human motions. Moreover, an optimized modified direct linear transformation (MDLT) method has been used to reconstruct 3D markers positions which are used for deriving kinematic characteristics of the motion. Consequently, a set of complete tests using some simple mechanical devices were conducted to verify the system outputs. Considering the system... 

    Human arm motion tracking by orientation-based fusion of inertial sensors and kinect using unscented kalman filter

    , Article Journal of Biomechanical Engineering ; Volume 138, Issue 9 , 2016 ; 01480731 (ISSN) Atrsaei, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2016
    Abstract
    Due to various applications of human motion capture techniques, developing low-cost methods that would be applicable in nonlaboratory environments is under consideration. MEMS inertial sensors and Kinect are two low-cost devices that can be utilized in home-based motion capture systems, e.g., home-based rehabilitation. In this work, an unscented Kalman filter approach was developed based on the complementary properties of Kinect and the inertial sensors to fuse the orientation data of these two devices for human arm motion tracking during both stationary shoulder joint position and human body movement. A new measurement model of the fusion algorithm was obtained that can compensate for the... 

    Markerless human motion tracking using microsoft kinect SDK and inverse kinematics

    , Article 12th Asian Control Conference, ASCC 2019, 9 June 2019 through 12 June 2019 ; 2019 , Pages 504-509 ; 9784888983006 (ISBN) Bilesan, A ; Behzadipour, S ; Tsujita, T ; Komizunai, S ; Konno, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Motion capture systems are used to gauge the kinematic features of the motion in numerous fields of research. Despite superb accuracy performance, the commercial systems are costly and difficult to use. To solve these issues, Kinect has been proposed as a low-priced markerless motion capture sensor, and its accuracy has been assessed using previous motion capture systems. However, in many of these studies, the anatomical joint angles captured using the Kinect are compared to the 3D rotation angles reported by the gold standard motion capture systems. These incompatibilities in the determination of the human joint angles can lead to higher error estimation. To accomplish a valid accuracy... 

    Forward dynamics simulation of human walking employing an iterative feedback tuning approach

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 223, Issue 3 , 2009 , Pages 289-297 ; 09596518 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    Inverse dynamics analysis as well as the generation of an optimal goal oriented human motion both lead to the problem of finding suitable activations of the redundant muscles involved. This paper employs an iterative feedback tuning approach to perform the forward dynamics simulation of the human musculoskeletal system during level walking. A modified form of the proportional-integral-derivative (PID) controller is proposed to stabilize the movement and provide tracking of problems of the desired lower extremity joint profiles. Controller parameters were determined iteratively using an optimization algorithm to minimize tracking errors during forward dynamics simulation. Static optimization... 

    Feasibility of infrared tracking of beating heart motion for robotic assisted beating heart surgery

    , Article International Journal of Medical Robotics and Computer Assisted Surgery ; Volume 14, Issue 1 , February , 2018 ; 14785951 (ISSN) Mansouri, S ; Farahmand, F ; Vossoughi, G ; Ghavidel, A. A ; Rezayat, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Background: Accurate tracking of the heart surface motion is a major requirement for robot assisted beating heart surgery. Method: The feasibility of a stereo infrared tracking system for measuring the free beating heart motion was investigated by experiments on a heart motion simulator, as well as model surgery on a dog. Results: Simulator experiments revealed a high tracking accuracy (81 μm root mean square error) when the capturing times were synchronized and the tracker pointed at the target from a 100 cm distance. The animal experiment revealed the applicability of the infrared tracker with passive markers in practical heart surgery conditions. Conclusion: With the current technology,...