Search for: humidity-control
0.006 seconds
Total 27 records

    A review on recent advances in humidification-dehumidification (HDH) desalination systems integrated with refrigeration, power and desalination technologies

    , Article Energy Conversion and Management ; Volume 196 , 2019 , Pages 1002-1036 ; 01968904 (ISSN) Faegh, M ; Behnam, P ; Shafii, M.B ; Sharif University of Technology
    Elsevier Ltd  2019
    Water and energy supply are two of the key issues human beings must address to attain sustainable development. Humidification-dehumidification technology has been proven to be a cost-effective approach to fulfill the freshwater demand. Particular attention has been given to coupling the humidification-dehumidification cycles with refrigeration, power and other desalination technologies with the aim of enhancing the performance of the combined cycle as well as increasing the amount of produced freshwater, cooling effect, power, etc. This paper provides a comprehensive review of the state-of-the-art investigations in terms of humidification-dehumidification technologies and their integration... 

    A comparison between the minimum-order & full-order observers in robust control of the air handling units in the presence of uncertainty

    , Article Energy and Buildings ; Volume 91 , 15 March , 2015 , Pages 115-130 ; ISSN: 3787788 Setayesh, H ; Moradi, H ; Alasty, A ; Sharif University of Technology
    Control of the air-handling units (AHU) is required to maintain satisfactory comfort conditions with low energy consumption. In the case of failure in sensor fusion systems of AHUs, full-order observers can be used as the supportive tool to provide an acceptable estimation of state variables. In this paper, a multivariable nonlinear model of the AHU is considered in the presence of uncertainties. The indoor temperature and relative humidity are controlled via manipulation of valve positions of air and cold water flow rates. In proposed hybrid control system, full and minimum-order observers are designed for the estimation of indoor temperature and relative humidity. Also, a regulator for... 

    PID-Fuzzy control of air handling units in the presence of uncertainty

    , Article International Journal of Thermal Sciences ; Volume 109 , 2016 , Pages 123-135 ; 12900729 (ISSN) Moradi, H ; Setayesh, H ; Alasty, A ; Sharif University of Technology
    Elsevier Masson SAS 
    Air-handling unit (AHU) is one of the most complex installations that its control is necessary for maintaining satisfactory comfort conditions in buildings with low energy utilization. In this paper, a multivariable nonlinear and minimum phase model of the AHU is considered in the presence of uncertainties. The controller design is divided into two types. The first controller type is for the linearized plant based on decoupled PID-Fuzzy and PD-type Fuzzy controllers. The second type is based on full matrix PID-Fuzzy and pole-placement controllers in which interaction effects are considered. The indoor temperature and relative humidity are controlled via manipulation of valve positions of air... 

    Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes

    , Article Desalination ; Volume 397 , 2016 , Pages 30-37 ; 00119164 (ISSN) Behnam, P ; Behshad Shafii, M ; Sharif University of Technology
    In this paper, the performance of a novel HDH solar desalination system equipped with a combination of heat pipe (HP), evacuated tube collector (ETC) and air bubble column humidifier is experimentally investigated. This novel HDH system uses advantages of ETC-HP as a highly efficient thermal absorption and conductor device, and at the same time employs the advantages of an air bubble column humidifier, i.e. high interface area and effective mixing in order to heat the water and humidify the air, respectively. The effects of various parameters including incoming air flow rate into the humidifier, initial depth of water in the humidifier, and adding fluids such as oil and water in the space... 

    Study of early-age creep and shrinkage of concrete containing Iranian pozzolans: An experimental comparative study

    , Article Scientia Iranica ; Volume 16, Issue 2 A , 2009 , Pages 126-137 ; 10263098 (ISSN) Ghodousi, P ; Afshar, M. H ; Ketabchi, H ; Rasa, E ; Sharif University of Technology
    This paper presents an experimental study on prediction of the early-age creep and shrinkage of concrete with and without silica fumes, trass, ground-granulated blast-furnace slag, combinations thereof, and influences of the proposed Iranian pozzolans. Experiments were carried out under a controlled ambient condition at a temperature of 40° C and a relative humidity (RH) of 50%, and a laboratory ambient condition at a temperature of 20° C and a relative humidity (RH) of 30% in order to collect the required data. Comparisons are made between ACI209-92, BS8110-1986 and CEB1970 prediction models, and an estimation model, based on 28-day results (short-term test method), using the same... 

    Combined desiccant-ejector cooling system assisted by organic rankine cycle for zero-power cooling and dehumidification

    , Article International Conference on Climate Resilient Cities - Energy Efficiency and Renewables in the Digital Era 2019, CISBAT 2019, 4 September 2019 through 6 September 2019 ; Volume 1343, Issue 1 , 2019 ; 17426588 (ISSN) Heidari, A. R ; Rostamzadeh, H ; Khovalyg, D ; Scartezzini, J. L ; Smith, B ; Swiss Federal Office of Energy ; Sharif University of Technology
    Institute of Physics Publishing  2019
    This study presents a novel set-up for desiccant-based cooling and dehumidification systems. In this cycle, a solid desiccant and conventional combined cooling and power (CCP) systems, based on the ejector refrigeration cycle (ERC) and the organic Rankine cycle (ORC), are integrated to provide dehumidification and cooling, simultaneously. The ERC is integrated with the ORC for devising a self-powered design which has not been done until now. The proposed integrated system is useful for replacing the peak electricity demand with the heat demand, decreasing the pressure on the power grid in humid areas. Dynamic hourly simulation of the proposed system as well as a conventional system were... 

    Performance evaluation of a novel compact humidification-dehumidification desalination system coupled with a heat pump for design and off-design conditions

    , Article Energy Conversion and Management ; Volume 194 , 2019 , Pages 160-172 ; 01968904 (ISSN) Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    In this study, the theoretical investigation of a novel heat pump assisted humidification-dehumidification desalination system has been carried out. The conventional dehumidifier of the humidification-dehumidification system was removed and the evaporator of the heat pump was utilized for direct dehumidification of air. Besides, the heat pump condenser was used as the saline water heater of the humidification-dehumidification cycle. First, the sizes of the components were calculated at design conditions for fixed input operational conditions namely the ambient air temperature, relative humidity, and inlet saline water temperature. However, the input operating conditions vary at off-design... 

    Supersonic separator's dehumidification performance with specific structure: Experimental and numerical investigation

    , Article Applied Thermal Engineering ; Volume 179 , October , 2020 Majidi, D ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Supersonic separators are used in gas separation processes such as dehumidification of humid air due to high performance and its good pressure recovery. In the present study, a comprehensive numerical and experimental investigation on the hydrodynamic behavior of air as working fluid and dehumidification performance of supersonic separator have been accomplished. The effect of the operational parameters on shockwave's position are examined. The outcomes show that by increasing the pressure level of supersonic separator, relative error between numerical and experimental results decreases from 20% to less than 10%. The effect of the operational parameters and humidity of inlet air on the... 

    Robust and efficient zero liquid discharge design strategy using four novel desalination systems: A comprehensive 4E assessment

    , Article Journal of Cleaner Production ; Volume 310 , 2021 ; 09596526 (ISSN) Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Discharging unconventional water sources having a high content of inorganic compounds is extremely destructive to the environment. In this research, four novel semi-open-air and closed-air configurations of brine-recycle humidification-dehumidification (BRHDH) systems with zero liquid discharge (ZLD) approach are presented to treat unconventional waters cost-effectively. Bubble-column humidifiers and dehumidifiers are used to have a low initial expenditure, and system multi-staging is implemented to reduce the operating expense of the configurations. The configurations are evaluated for high saline brine treatment using comprehensive energy, exergy, exergoeconomic, and exergoenvironmental... 

    Indirect mechanical heat pump assisted humidification-dehumidification desalination systems

    , Article International Journal of Energy Research ; Volume 45, Issue 11 , 2021 , Pages 15892-15920 ; 0363907X (ISSN) Rostamzadeh, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    In this study, four new indirect heat pump assisted mechanical vapor compression humidification-dehumidification (HDH) systems are proposed and their superiorities over the reference system are demonstrated from thermodynamics and thermoeconomics viewpoints. The proposed models are configured based on an HDH unit and a simple cascade heat pump, an HDH unit and a heat pump with an ejector, an HDH unit and a cascade heat pump with an ejector, and an HDH unit and a vapor injection heat pump. Although employing a heat pump with cascade and ejector configurations improved gain-output-ratio (GOR) and specific power consumption (SPC) values in comparison with the base system, the performance... 

    A new approach to exergy analyses of a hybrid desiccant cooling system compares to a vapor compression system

    , Article Applied Mechanics and Materials, 29 July 2011 through 31 July 2011 ; Volume 110-116 , July , 2012 , Pages 2163-2169 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Khosravi, S ; Yau, Y. H ; Mahlia, T. M. I ; Saidi, M. H ; Sharif University of Technology
    In the recent researches HVAC with a based desiccant dehumidifier with a low ambient impact is more efficient in comparison to the traditional systems. Hybrid desiccant cooling systems can be used to control indoor air quality in buildings. This paper presents an integrated energy, entropy and exergy analysis of a hybrid desiccant cooling system compare to a compression system based on first and second laws of thermodynamic. The main objective is the use of a method called exergy costing applied to a conventional compression system that has been chosen to provide the proper conditioned air for a building in hot and humid condition. By applying the same method for the equivalent hybrid... 

    An innovative three dimensional numerical model for bipolar plates to enhance the efficiency of PEM fuel cells

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 351-360 ; 9780791844823 (ISBN) Arbabi, F ; Roshandel, R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    The efficiency of proton exchange membrane (PEM) fuel cell is straightly correlated to the bipolar plate design and fluid channel arrangements. Higher produced energy can be attained by optimal design of type, size, or patterns of the channels. Previous researches showed that the bipolar plate channel design has a considerable effect on reactant distribution uniformity as well as humidity control in PEM fuel cells. This paper concentrates on enhancements in the fuel cell performance by optimization of bipolar plate design and channels configurations. A numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The results gained from... 

    Analysis of dehumidification effects on cooling capacity of an evaporative cooler

    , Article Journal of Thermal Science and Technology ; Volume 5, Issue 1 , 2010 , Pages 151-164 ; 18805566 (ISSN) Saidi, M. H ; Aghanajafi, C ; Mohammadian, M ; Sharif University of Technology
    In this study, effect of desiccant wheel, heat exchanger and cooling coil will be evaluated on decreasing the wet bulb temperature of entering air to cooling tower and decreasing the outlet cold water temperature. For this purpose, change effect of desiccant wheel parameters will be investigated on wet bulb temperature of outlet air from heat exchanger. After that, optimum parameters and minimum wet bulb temperature will be selected. Then, outlet cold water temperature will be achieved for various cooling coil surface temperature with definition of by pass factor and also by using optimum desiccant wheel parameters and entrance air wet bulb temperature to tower related to cooling coil... 

    Experimental investigation of heat recovery in a humidification-dehumidification desalination system via a heat pump

    , Article Desalination ; Volume 437 , 2018 , Pages 81-88 ; 00119164 (ISSN) Shafii, M. B ; Jafargholi, H ; Faegh, M ; Sharif University of Technology
    Elsevier B.V  2018
    A hybrid HDH desalination system integrated with a heat pump was experimentally studied. In this system, heat pump's heating was used to raise the temperature of the air entering the humidifier and its cooling effect was used for dehumidification of humid air and freshwater production. In other words, heat pump's condenser works as the heater of the HDH cycle and its evaporator works as the coolant for the dehumidifier of HDH cycle. The effects of different parameters such as mass flow rate of inlet saline water (relative humidity of the air passing the dehumidification section), volume flow rate of the air passing the dehumidification section and ambient air temperature on freshwater... 

    Effect of CsCl additive on the morphological and optoelectronic properties of formamidinium lead iodide perovskite

    , Article Solar RRL ; Volume 3, Issue 11 , 2019 ; 2367198X (ISSN) Chavan, R. D ; Prochowicz, D ; Yadav, P ; Tavakoli, M. M ; Nimbalkar, A ; Bhoite, S. P ; Hong, C. K ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    The quality of perovskite films plays a crucial role in improving the optoelectronic properties and performance of perovskite solar cells (PSCs). Herein, high-quality CsxFA1−xPbI3 perovskite films with different compositions (x = 0, 5, 10, and 15) are achieved by controlling the amount of cesium chloride (CsCl) in the respective FAPbI3 precursor solution. The effects of CsCl addition on the morphological and optoelectronic properties of the resulting perovskite films and on the performance of the corresponding devices are systematically studied. Introduction of CsCl into FAPbI3 shows a great potential to stabilize the α-FAPbI3 perovskite phase by forming CsxFA1−xPbI3 films with improved... 

    Nonlinear robust control of air handling units to improve the indoor air quality & CO2 concentration: A comparison between H∞ & decoupled sliding mode controls

    , Article Applied Thermal Engineering ; Volume 160 , 2019 ; 13594311 (ISSN) Setayesh, H ; Moradi, H ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Air-handling units (AHUs) are the installations responsible for the control of temperature and humidity inside a space using the heating, cooling, humidifier and drying air components. In this research, a multivariable nonlinear dynamic model of the AHU with one zone in the VAV (variable air volume) system for working in the summer is considered. The indoor temperature, relative humidity and carbon dioxide concentration are controlled via manipulation of the valve positions of the air flow rate, cold water flow rate and fresh air percent. Due to the complexity and nonlinearity of AHU model and also the existence of various operating points and uncertainty, model uncertainties are included.... 

    Thermal performance assessment of an evaporative condenser-based combined heat pump and humidification-dehumidification desalination system

    , Article Desalination ; Volume 496 , 2020 Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    A new design for heat pump integrated humidification-dehumidification (HDH-HP) desalination cycles was proposed in the current experimental study. An evaporative condenser was designed and fabricated instead of a separate humidifier, heater, and air/water-cooled condensers find in previous HDH-HP systems. Meanwhile, the air dehumidification process in this work directly occurred inside the heat pump evaporator. The effect of several operating parameters such as ambient wet-bulb temperature, spraying saline water and airflow rates, compressor speed, superheat, and evaporator saturation temperature control modes of the electronic expansion valve (EEV) on freshwater production and GOR were... 

    Brine elimination by hybridization of a novel brine-recycle bubble-column humidification-dehumidification system with a multiple-effect distillation system

    , Article Energy Conversion and Management ; Volume 217 , 2020 Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Over the past decades, drastic growth in the installed capacity of seawater desalination systems has increased the energy consumption and brine discharge to the environment. However, using renewable energies and zero liquid discharge systems for minimizing these challenges is limited due to the higher fresh water cost of the systems rather than that of the conventional systems. In this research, a bubble-column humidification-dehumidification zero liquid discharge system is coupled with a multiple-effect distillation/vapor compression system in a novel way to overcome the high water cost of conventional zero liquid discharge systems. Further, the base system and the solar-powered system is... 

    Energy, exergy, exergoeconomics, and exergoenvironmental assessment of three brine recycle humidification-dehumidification desalination systems applicable for industrial wastewater treatment

    , Article Energy Conversion and Management ; Volume 205 , 2020 Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Using zero liquid discharge systems is one of the efficient methods to reduce the negative environmental impact of the brines of the desalination systems and also to recycle the industrial wastewaters for reuse. Due to the simple fabrication process, low maintenance cost, intensive to inlet water quality, and the ability to use renewable and low-grade-heat, modified humidification-dehumidification systems may be a proper choice for the zero liquid discharge applications. Thus, in the present study, the energy, exergy, exergoeconomic, and exergoenvironmental assessment of three advanced brine recycle humidification-dehumidification systems for zero liquid discharge operation are... 

    A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source

    , Article Renewable Energy ; Volume 148 , 2020 , Pages 31-43 Gholizadeh, T ; Vajdi, M ; Rostamzadeh, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Among different types of geothermal processing used in the energy conversion systems, flash-binary geothermal can be the best scenario for high-temperature geothermal sources. Reviewing the available literature it can be found that the flash-binary geothermal power plants have a great potential to be extended to trigeneration systems, nonetheless they have received less attention. In this regard, a new trigeneration system for freshwater, power, and cooling production is devised using a flash-binary geothermal heat source at 170°C. In this devised trigeneration system, a humidification-dehumidification (HDH) unit is used as a binary cycle. Another merit of the devised trigeneration system is...