Loading...
Search for: hybrid-composites
0.007 seconds

    Hybrid PP-EPR-GF composites. Part II: Fracture mechanisms

    , Article Plastics, Rubber and Composites ; Volume 32, Issue 10 , 2003 , Pages 439-444 ; 14658011 (ISSN) Zebarjad, S. M ; Bagheri, R ; Lazzeri, A ; Sharif University of Technology
    2003
    Abstract
    The fracture mechanism of hybrid iPP-EPR-GF composites has been studied by notched Charpy, three- and four-point bending fracture tests. The results of impact tests illustrate that increasing both temperature and EPR/GF ratio increases the impact energy of iPP-EPR-GF. Indeed, with increasing temperature, a brittle, ductile, transition temperature (BDTT) occurs. The results of a three-point bending test show that fracture toughness (KIC) can be improved by addition of both GF and EPR. Since the trend in the fracture toughness values is close to what would be expected by the rule of blends, it can be concluded that the use of both GF and EPR has no significant synergistic effect on toughening.... 

    Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes [electronic resource]

    , Article Journal of Materials Science and Engineering: A ; 10 June 2013, Volume 572, P.83–90 Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A. (Abdolreza) ; Kim, H. S ; Sharif University of Technology
    Abstract
    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical... 

    Improving tribological behavior of friction stir processed A413/SiCp surface composite using MoS2 lubricant particles

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 27, Issue 2 , 2017 , Pages 298-304 ; 10036326 (ISSN) Janbozorgi, M ; Shamanian, M ; Sadeghian, M ; Sepehrinia, P ; Sharif University of Technology
    Nonferrous Metals Society of China  2017
    Abstract
    The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed... 

    Study of Microstructure and Mechanical Properties of PA6/GF/GB Hybrid Composites

    , M.Sc. Thesis Sharif University of Technology Alamshahi, Amin (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Polyamide 6 is one of the well-known and oldest engineering thermoplastics, which has many uses in the transportation, automotive, apparel and sports industries due to its high strength, high corrosion resistance and high service temperatures. Cite gears, radiator tank, cylinder head cap and fuel rails can be mentioned as Polyamide 6 applications in the automotive industry. Glass fibers are used as reinforcement in PA6 media in order to enhance mechanical properties like tensile and impact strength. Even though the glass fiber improves the mechanical properties of the components produced from fiber-reinforced composites, it increases the anisotropy properties of the material and making it... 

    Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering

    , Article Ceramics International ; Volume 45, Issue 13 , 2019 , Pages 16288-16296 ; 02728842 (ISSN) Orooji, Y ; Ghasali, E ; Moradi, M ; Derakhshandeh, M. R ; Alizadeh, M ; Shahedi Asl, M ; Ebadzadeh, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A near fully dense mullite-TiB2-CNTs hybrid composite was prepared successfully trough spark plasma sintering. 1 wt%CNT and 10 wt%TiB2 were mixed with nano-sized mullite powders using a high energy mixer mill. Spark plasma sintering was carried out at 1350 °C under the primary and final pressure of 10 MPa and 30 MPa, respectively. XRD results showed mullite and TiB2 as dominant crystalline phases accompanied by tiny peaks of alumina. The microstructure of prepared composites demonstrated uniform distribution of TiB2 reinforcements in mullite matrix without any pores and porosities as a result of near fully densified spark plasma sintered composite. The fracture surface of composite revealed... 

    Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes

    , Article Materials Science and Engineering A ; Volume 572 , 2013 , Pages 83-90 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical... 

    Anomalous fracture behavior in an epoxy-based hybrid composite

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 49-58 ; 09215093 (ISSN) Marouf, B. T ; Pearson, R. A ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    In this investigation, core-shell rubber particles and organically modified clay were added to an epoxy resin and the changes in mechanical behavior were studied. As expected, the yield strength of the organoclay-filled epoxies increased modestly with increasing clay content and the yield strength of the rubber-modified compounds decreased with rubber content. Interestingly, the compressive yield strength of epoxy resins containing both rubber particles and organoclay (a.k.a. hybrid nanocomposites) was found to be independent on organoclay content (up to 5 phr). The fracture toughness of organoclay-filled epoxies increased modestly with clay content and, as expected, the increases in... 

    A highly efficient MIL-101(Cr)–Graphene–molybdenum oxide nano composite for selective oxidation of hydrogen sulfide into elemental sulfur

    , Article Journal of Industrial and Engineering Chemistry ; Volume 71 , 2019 , Pages 308-317 ; 1226086X (ISSN) Pourreza, A ; Askari, S ; Rashidi, A ; Fakhraie, S ; Kooti, M ; Shafiei Alavijeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2019
    Abstract
    Hybrid composites of MIL-101(Cr) and Nanoporous Graphene with ratios in the range of 10–50% were prepared via hydrothermal synthesis method. This study deals with an experimental investigation on selective oxidation of H2S into elemental sulfur in the range of 200–270 °C, the catalyst activity and selectivity toward sulfur was studied. High-temperature reactor tests indicated that the MIL-101(Cr)–NPG50–Mo could be a promising candidate with conversion and selectivity of 100% and 99.5% at 200 °C. The MIL-101(Cr)–NPG50–Mo stability showed there were not any significant changes in physical properties, the activity was evaluated after 20 h which was completely stable without any changes  

    Heterostructured TiO2/SiO2/γ-Fe2O3/rGO coating with highly efficient visible-light-induced self-cleaning properties for metallic artifacts

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 26 , 3 June , 2020 , Pages 29671-29683 Mokhtarifar, M ; Kaveh, R ; Bagherzadeh, M ; Lucotti, A ; Pedeferri, M ; Diamanti, M. V ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    A novel nanohybrid composite of TiO2, SiO2, γ-Fe2O3, and reduced graphene oxide (TiO2@Si:Fe:rGO) is fabricated by the sol-gel method. The properties of the coated film were examined by structural and self-cleaning analyses using simulated discoloration/soiling and roofing tests. The fabricated transparent TiO2@Si:Fe:rGO composite showed excellent photoactivity and wettability, behaving well in self-cleaning applications. The addition of SiO2 improved the crystalline structure and surface hydroxylation of TiO2 nanoparticles. γ-Fe2O3 decreased the recombination rate of e-/h+ pairs, and significantly improved photocatalytic activity under visible light. Moreover, rGO sheets as excellent... 

    Effect of hybridization on crystallization behavior, mechanical properties, and toughening mechanisms in rubber-modified polypropylene flax fiber composites

    , Article Journal of Composite Materials ; Volume 56, Issue 17 , 2022 , Pages 2677-2693 ; 00219983 (ISSN) Bahrami, R ; Bagheri, R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Nowadays, the significance of sustainability has urged composite manufacturers to replace traditional synthetic fibers with eco-friendly natural alternatives due to their environmental and economic benefits. This work aims to fabricate hybrid polypropylene (PP) composites with short flax fibers, octene-ethylene copolymer (POE) rubber particles, and maleic anhydride-grafted polypropylene (MAPP) compatibilizer. The main goal is to gain an insight into the combined effect of toughening mechanisms induced by the short fibers and rubber particles at the crack tip and wake of composites, which is a crucial step in reaching a balance between toughness and rigidity. In this regard, a novel... 

    Tire tread performance of silica-filled SBR/BR rubber composites incorporated with nanodiamond and nanodiamond/nano-SiO2 hybrid nanoparticle

    , Article Diamond and Related Materials ; Volume 126 , 2022 ; 09259635 (ISSN) Salkhi Khasraghi, S ; Momenilandi, M ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the present research, the influence of nanodiamond (ND) and a physical hybrid of ND and fumed nano-SiO2 were investigated on the performance of a typical tire tread compound. The styrene-butadiene rubber (SBR) and cis-butadiene rubber (BR) blend filled with a commercial grade highly dispersive silica at 70 phr loading were used as typical tire tread compound. ND was substituted partially with silica at two different concentrations of 5 and 10phr. Meanwhile, 5 phr of ND/nano-SiO2 hybrids with the weight ratio of 2.5/2.5 and 1/4 were substituted with silica. ND-Filled compounds exhibit increased scorch and cure time compared to controls. Improvement in different characteristics of the...