Loading...
Search for: hybrid-nanofluid
0.008 seconds

    Characterization of magnetized CNT-based hybrid nanofluid subjected to convective phenomenon

    , Article International Journal of Modern Physics B ; Volume 35, Issue 28 , 2021 ; 02179792 (ISSN) Hayat, T ; Khan, W. A ; Aqsa ; Waqas, M ; Abbas, S. Z ; Malik, M. Y ; Alqahtani, A. S ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Hybrid nanofluid gains attention of scientists due to its dynamic properties in various fields, and thus, hybrid nanofluids can be taken as an innovative form of nanofluids. Even though analysts acquire tremendous results in the field of hybrid nanofluids but yet no study has been carried out to predict magnetohydrodynamic effects in such fluid models. In this present analysis, influence of MHD has been investigated for the micro hybrid nanofluid over a stretched surface under convective conditions. Combine boundary layer equations for the flow have been altered into a suitable form via boundary layer approximations. Further, complete nonlinear system of equations has been numerically solved... 

    Utilization of hybrid nanofluids in solar energy applications: A review

    , Article Nano-Structures and Nano-Objects ; Volume 20 , 2019 ; 2352507X (ISSN) Ahmadi, M. H ; Ghazvini, M ; Sadeghzadeh, M ; Alhuyi Nazari, M ; Ghalandari, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Hybrid nanofluids have several advantages compared with the conventional types due to their modified properties. Their enhanced thermophysical and rheological properties make them more appropriate for solar energy systems. In this review paper, an overview of solar energy systems is represented, and afterwards, applications of hybrid nanofluids in various solar technologies, especially solar thermal, are reviewed. Comparison between the nanofluidic systems, and the conventional ones is performed in order to gain a deeper insight into the advantages of using nanofluids. According to the results of the reviewed studies, the most important reason for performance enhancement of nanofluidic solar... 

    An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes

    , Article Thermochimica Acta ; Volume 617 , October , 2015 , Pages 102-110 ; 00406031 (ISSN) Shahsavar, A ; Salimpour, M. R ; Saghafian, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Nanofluids containing Fe3O4 and carbon nanotubes nanoparticles emulsified and dispersed using gum arabic (GA) and tetramethylammonium hydroxide (TMAH) were made and characterized for potential use as heat transfer fluids. Due to the interaction between the TMAH and GA molecules, the magnetic nanoparticles and CNTs were physically adsorbed. This paper reports an experimental work on the effect of ultrasonication on thermal conductivity of this aqueous suspension. The characterization and surface morphology of the dried samples were studied by using XRD and TEM measurements. Experiments were conducted in the magnetic nanoparticles mass concentration range 0.494-2.428%,... 

    Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/water hybrid nanofluid natural convection

    , Article Powder Technology ; Volume 375 , 20 September , 2020 , Pages 493-503 Goudarzi, S ; Shekaramiz, M ; Omidvar, A ; Golab, E ; Karimipour, A ; Karimipour, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The present study aims to investigate the impact of nanoparticle migration due to Brownian motion and thermophoresis on Ag-MgO/Water hybrid nanofluid natural convection. An enclosure with sinusoidal wavy walls is considered for this investigation; right and cold walls of this enclosure are in constant temperature while the upper and bottom walls are insulated. This simulation follows Buongiorno's mathematical model; Brownian and thermophoresis diffusion of Ag occurs in MgO-Water nanofluid while the diffusion of MgO happens in Ag-water nanofluid. The result indicates that Nu number increments up to 11% by increasing thermophoresis diffusion for both nanoparticles. Also, increasing Brownian... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar... 

    Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2015 , Pages 1-9 ; 09477411 (ISSN) Shahsavar, A ; Saghafian, M ; Salimpour, M. R ; Shafii, M. B ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    The aim of this paper is to investigate the thermal conductivity and viscosity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe3O4 nanoparticles and gum arabic (GA) coated carbon nanotubes (CNTs), experimentally. The magnetic nanoparticles and CNTs are physically attached as the result of interaction between the TMAH and GA molecules. The morphology and structure of the samples are characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experiments are carried out in the magnetic nanoparticles volume concentration range of 0.1–0.9 %, CNT volume concentration range of 0.05–1.35 % and the temperature range of 25–55 °C. The... 

    Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 52, Issue 10 , 2016 , Pages 2293-2301 ; 09477411 (ISSN) Shahsavar, A ; Saghafian, M ; Salimpour, M. R ; Shafii, M. B ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The aim of this paper is to investigate the thermal conductivity and viscosity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe3O4 nanoparticles and gum arabic (GA) coated carbon nanotubes (CNTs), experimentally. The magnetic nanoparticles and CNTs are physically attached as the result of interaction between the TMAH and GA molecules. The morphology and structure of the samples are characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experiments are carried out in the magnetic nanoparticles volume concentration range of 0.1–0.9 %, CNT volume concentration range of 0.05–1.35 % and the temperature range of 25–55 °C. The... 

    Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis

    , Article Energy Conversion and Management ; Volume 205 , 2020 Salari, A ; Kazemian, A ; Ma, T ; Hakkaki Fard, A ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the current research, a three-dimensional photovoltaic thermal system integrated with phase change material system with nanofluids is investigated. The working fluids involved in this study include nano-magnesium oxide, multiwall carbon nano tube and hybrid (mixture of nano-magnesium oxide and nano-multiwall carbon nano tube) nanofluids dispersed in pure water. After comparing single-phase model and mixture model, the mixture model is used in the study and fluid flow regime in the collector is assumed to be laminar, fully develop, uniform and incompressible, to model the nanofluid in the system. A parametric analysis is conducted to examine the effect of various parameters such as working... 

    Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol

    , Article International Communications in Heat and Mass Transfer ; Volume 129 , 2021 ; 07351933 (ISSN) Ahmad, S ; Ali, K ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanoparticles possess better chemical stability, mechanical resistance, thermal conductivity, physical strength and so forth as equated to pure nanoparticles. The present work describes the novel features of hybrid nanoparticles such as Titanium oxide (TiO2) and Copper (Cu) in the flow of Ethylene glycol (EG) under the induced magnetic field environment. The analysis covers the features of both pure nanofluid Cu/EG and hybrid nanofluid Cu-TiO2/EG. The concentration equation is amended by the activation energy term. The amalgamation of Cu-TiO2/EG exhibits improved and embellished thermal characteristics. A persuasive numerical technique named “Successive over Relaxation” is used to... 

    Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol

    , Article International Communications in Heat and Mass Transfer ; Volume 129 , 2021 ; 07351933 (ISSN) Ahmad, S ; Ali, K ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanoparticles possess better chemical stability, mechanical resistance, thermal conductivity, physical strength and so forth as equated to pure nanoparticles. The present work describes the novel features of hybrid nanoparticles such as Titanium oxide (TiO2) and Copper (Cu) in the flow of Ethylene glycol (EG) under the induced magnetic field environment. The analysis covers the features of both pure nanofluid Cu/EG and hybrid nanofluid Cu-TiO2/EG. The concentration equation is amended by the activation energy term. The amalgamation of Cu-TiO2/EG exhibits improved and embellished thermal characteristics. A persuasive numerical technique named “Successive over Relaxation” is used to... 

    Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms

    , Article Ain Shams Engineering Journal ; Volume 13, Issue 5 , 2022 ; 20904479 (ISSN) Ahmad, S ; Akhter, S ; Imran Shahid, M ; Ali, K ; Akhtar, M ; Ashraf, M ; Sharif University of Technology
    Ain Shams University  2022
    Abstract
    An enhancement in heat transfer due to nanofluids is essentially required in various thermal systems. Hybrid nanofluids possess high thermal conductivity and, have ability to embellish and enhance the thermal strength of common fluids. Our concern in this paper is to examine the innovative attributes of hybrid nanofluids like Manganese zinc ferrite (MnZnFe2O4) and Nickel zinc ferrite (NiZnFe2O4) in the bio-convective flow of motile gyrotactic microorganisms subject to Darcy Forchheimer medium. The effect of activation energy has also been taken into account. Mathematical treatment is carried out via MATLAB software. The use of MnZnFe2O4 - NiZnFe2O4/H2O exhibits improved thermal... 

    Thermal characteristics of kerosene oil-based hybrid nanofluids (Ag-MnZnFe2O4): A comprehensive study

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Ahmad, S ; Ali, K ; Haider, T ; Jamshed, W ; Tag El Din, E. S. M ; Hussain, S. M ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Hybrid nanofluids are new and most fascinating types of fluids that involve superior thermal characteristics. These fluids exhibit better heat-transfer performance as equated to conventional fluids. Our concern, in this paper, is to numerically interpret the kerosene oil-based hybrid nanofluids comprising dissimilar nanoparticles like silver (Ag) and manganese zinc ferrite (MnZnFe2O4). A numerical algorithm, which is mainly based on finite difference discretization, is developed to find the numerical solution of the problem. A numerical comparison appraises the efficiency of this algorithm. The effects of physical parameters are examined via the graphical representations in either case of... 

    Application of hybrid nanofluids in a novel combined photovoltaic/thermal and solar collector system

    , Article Solar Energy ; Volume 239 , 2022 , Pages 102-116 ; 0038092X (ISSN) Kazemian, A ; Salari, A ; Ma, T ; Lu, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Because of the low outflow temperature of the conventional photovoltaic thermal systems and lack of electrical production of the solar thermal collectors, a novel combined system is proposed to solve the two mentioned drawbacks. This novel system is achieved by connecting a photovoltaic thermal unit to a solar thermal collector in series. To increase the overall performance of this novel combined system, different hybrid nanofluids include (1) multiwall carbon nanotube-aluminum oxide (2) multiwall carbon nanotube-silicon carbide (3) graphene-aluminum oxide, and (4) graphene-silicon carbide are compared. The investigation is performed based on the three-dimensional simulation, and the...