Loading...
Search for: hydraulic-equipment
0.004 seconds

    On identification of nonlinear systems using volterra kernels expansion on Laguerre and wavelet function

    , Article 2010 Chinese Control and Decision Conference, CCDC 2010, 26 May 2010 through 28 May 2010, Xuzhou ; 2010 , Pages 1141-1145 ; 9781424451821 (ISBN) Moodi, H ; Bustan, D ; Sharif University of Technology
    2010
    Abstract
    Application of Volterra series to the modeling of static and dynamic nonlinear systems is investigated in this paper and compared to other methods. For nonlinear systems with memory, Volterra series serves as a generalization of convolution integral. To parameterize the Volterra kernels for limited dimension series, different methods are discussed. We use Laguerre functions and wavelet packets as orthonormal basis and we find the poles for the basis through a genetic algorithm search. Our test system is a hydraulic actuator with a highly nonlinear dynamics which is modeled with Volterra series. The results show that dynamic model with wavelet packets give a more accurate model with respect... 

    A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications

    , Article Industrial Robot ; Volume 32, Issue 2 , 2005 , Pages 171-178 ; 0143991X (ISSN) Tavakoli, M ; Zakerzadeh, M. R ; Vossoughi, G. R ; Bagheri, S ; Sharif University of Technology
    2005
    Abstract
    Purpose - Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole. Design/methodology/approach - Introducing a hybrid (parallel/serial) four degree of freedom (DOF) mechanism as the main part of the robot and also introduces a unique gripper design for pole climbing robots. Findings - Finds that a robot, with the ability of climbing and manipulating on poles with bends and branches, needs at least 4 DOFs. Also an electrical cylinder is a good option for climbing robots and has some advantages over pneumatic or hydraulic cylinders. Research limitations/implications - The robot is semi-industrial... 

    Designing a LQR controller for an electro-hydraulic-actuated-clutch model

    , Article Proceedings of 2016 2nd International Conference on Control Science and Systems Engineering, ICCSSE 2016, 27 July 2016 through 29 July 2016 ; 2016 , Pages 82-87 ; 9781467398725 (ISBN) Pourebrahim, M ; Selk Ghafari, A ; Pourebrahim, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    During the past decade, Electro-Hydraulic system has performed a significant role in industrial engineering as an actuator for high performance and precision positioning applications. In this case, many control methods have been developed for an electro-hydraulic actuated clutch. In this paper a Linear Quadratic Regulators (LQR) is proposed to trajectory control of a wet clutch actuated by a hydraulic servo valve mechanism. Simulation study was performed using linearized mathematical model of the system implemented in MATLAB software. Based on the simulation results performance of the proposed controller was evaluated and discussed  

    Modeling and control of ionic polymer-metal composite structures

    , Article 13th International Congress on Sound and Vibration 2006, ICSV 2006, Vienna, 2 July 2006 through 6 July 2006 ; Volume 1 , 2006 , Pages 677-681 ; 9781627481502 (ISBN) Yousefi Koma, A ; Fazeli, R ; Sharif University of Technology
    2006
    Abstract
    Robotic devices are traditionally actuated by hydraulic systems or electric motors. However, in compact robotic systems, new actuator technologies are required. Ionic Polymer-Metal Composites (IPMCs) are attractive electroactivc polymer actuators because of their characteristics of large electrically induced bending, mechanical flexibility, low excitation voltage, low density, and ease of fabrication. A dynamic analytical model of IPMC is developed in this study. An RC model is employed based on time response results of a typical silver deposited IPMC. Results show that the electrical model is a suitable presentation of IPMC actuators. The model is tested with two experimental data of IPMC... 

    An evolvable self-organizing neuro-fuzzy multilayered classifier with group method data handling and grammar-based bio-inspired supervisors for fault diagnosis of hydraulic systems

    , Article International Journal of Intelligent Computing and Cybernetics ; Vol. 7, issue. 1 , 2014 , p. 38-78 Mozaffari, A ; Fathi, A ; Behzadipour, S ; Sharif University of Technology
    Abstract
    Purpose: The purpose of this paper is to apply a hybrid neuro-fuzzy paradigm called self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) to classify the operating faults of a hydraulic system. The main motivation behind the use of SONeFMUC is to attest the capabilities of neuro-fuzzy classifier for handling the difficulties associated with fault diagnosis of hydraulic circuits. Design/methodology/approach: In the proposed methodology, first, the neuro-fuzzy nodes at each layer of the SONeFMUC are trained separately using two well-known bio-inspired algorithms, i.e. a semi deterministic method with random walks called co-variance matrix adaptation evolutionary strategy (CMA-ES) and... 

    Regulator and tracking system design for a single-rod hydraulic actuator via pole-placement approach

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 7, Issue PARTS A AND B , November , 2011 , Pages 173-181 ; 9780791854938 (ISBN) Moradi, H ; Hajikolaei, K. H ; Bakhtiari Nejad, F ; Sharif University of Technology
    2011
    Abstract
    Due to the nonlinear dynamics of hydraulic systems, applying high performance closed-loop controllers is complicated. In this paper, a single-rod hydraulic actuator is considered in which load displacement (for positioning purposes) is controlled via manipulation of the input voltage to the servo-valve. Dynamics of the servo-valve is described by first and second order transfer functions (named as Models 1 and 2). Through linearization of the system around its operating points, dynamics of the hydraulic actuator is represented in the state space. A full-order observer is designed for on-line states estimation. Then, feedback control system is designed for both regulation and tracking... 

    Experimental study of small and medium break LOCA in the TTL-2 thermo-hydraulic test loop and its modeling with RELAP5/MOD3.2 code

    , Article Scientia Iranica ; Volume 17, Issue 6 B , NOVEMBER-DECEMBER , 2010 , Pages 492-501 ; 10263098 (ISSN) Taherzadeh, M ; Jafari, J ; Vosoughi, N ; Arabnezhad, H ; Sharif University of Technology
    2010
    Abstract
    Small and medium break LOCA accidents at low pressure and under low velocity conditions have been studied in the TTL-2 Thermo-hydraulic Test Loop, experimentally. TTL-2 is a thermal hydraulic test facility which is designed and constructed in NSTRI to study thermal hydraulic parameters under normal operational and accident conditions of nuclear research reactors. A nodalization has been developed for the TTL-2 and experimental results have been compared with RELAP5/MOD3.2 results. The considered accidents are a 25% and 50% cold leg break without emergency core cooling systems. Results show good agreement between experiments and RELAP5/MOD3.2 results. This research provides experimental data... 

    Investigation of a nonlinear dynamic hydraulic system model through the energy analysis approach

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 11 , 2010 , Pages 2973-2979 ; 1738494X (ISSN) Afshari, H. H ; Ehramianpour, M ; Mohammadi, M ; Sharif University of Technology
    Abstract
    The dynamics of a pressure regulator valve have been studied using the through Bondgraph simulation technique. This valve consists of several elements that can transmit, transform, store, and consume hydraulic energy. The governing equations of the system have been derived from the dynamic model. In solving system equations numerically, various pressure-flow characteristics across the regulator ports and orifices have been taken into consideration. This simulation study identifies some critical parameters that have significant effects on the transient response of the system. The results have been obtained using the MATLAB-SIMULINK environment. The main advantage of the proposed methodology... 

    Design of a mechanically closed-loop test rig for testing aviation industry’s gearboxes

    , Article Aviation ; Volume 21, Issue 4 , 2017 , Pages 132-142 ; 16487788 (ISSN) Mozafari, S ; Rezazadeh Mohamadi, M ; Dolatkhah Takloo, S ; Mardani, M ; Sharif University of Technology
    Abstract
    Due to the wide usage of rotary equipment and the necessity of their testing for maintenance and repair, test rigs have become necessary. The mechanical closed-loop test rig developed in Sharif University of Technology branch of ACECR (Academic Centre of Education, Culture and Research) is a test rig with low energy losses that is suitable for testing high power gearboxes such as aerospace or wind turbine gearboxes. It can be loaded up to 489Hp at a maximum speed of 3000 rpm, and the test components can be tested in different testing conditions including a variety of torques and speeds. This paper describes the preliminary, conceptual, and detailed design, steps including frame work design,... 

    Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifers

    , Article Water Resources Management ; Volume 25, Issue 1 , 2010 , Pages 165-190 ; 09204741 (ISSN) Ataie Ashtiani, B ; Ketabchi, H ; Sharif University of Technology
    2010
    Abstract
    This paper presents an evolutionary based approach to achieve optimal management of a coastal aquifer to control saltwater intrusion. An improved Elitist Continuous Ant Colony Optimization (ECACO) algorithm is employed for optimal control variables setting of coastal aquifer management problem. The objectives of the optimal management are; maximizing the total water-pumping rate, while controlling the drawdown limits and protecting the wells from saltwater intrusion. Since present work is one of the first efforts towards the application of an ECACO algorithm, sharp interface solution for steady state problem is first exploited. The performance of the developed optimization model is evaluated... 

    Effects of unsteady friction factor on gaseous cavitation model

    , Article Scientia Iranica ; Volume 17, Issue 1 B , 2010 , Pages 13-24 ; 10263098 (ISSN) Mosharaf Dehkordi, M ; Firooz Abadi, B ; Sharif University of Technology
    Abstract
    The condition known as a water-hammer problem is a transient condition that may occur as a result of worst-case loadings, such as pump failures, valve closures, etc. in pipeline systems. The pressure in the water hammer can vary in such a way that in some cases it may increase and cause destruction to the hydraulic systems. The pressure in the water hammer can also be decreased to the extent that it can fall under the saturation pressure, where cavitation appears. Therefore, the liquid is vaporized, thus, making a two-phase flow. This pressure decrease can be as dangerous as the pressure rise. As a result of the pressure drop and vaporization of the liquid, two liquid regions are separated,...