Loading...
Search for: hydraulic-fracturing
0.005 seconds
Total 47 records

    Evaluation of hydraulic fracturing pressure in a porous medium by using the finite element method

    , Article Energy Sources ; Volume 24, Issue 8 , 2002 , Pages 715-724 ; 00908312 (ISSN) Nouri, A ; Panah, A. K ; Pak, A ; Vaziri, H ; Islam, M. R ; Sharif University of Technology
    2002
    Abstract
    Hydraulic fracturing is a complicated phenomenon in which deformation of the porous medium and fluid leak-off to the surrounding area take place simultaneously. Their interaction therefore must not be overlooked. Modeling of this phenomenon in isothermal conditions requires analysis of soil deformation and crack and pore fluid pressure interaction. In this paper, a numerical scheme is presented for analysis of soil stresses and deformations and fluid flow in a coupled manner. This scheme is also used to detect the fracture in the medium. Our model was used in simulating a set of hydraulic fracturing experiments. These experiments were performed on compacted hollow cylindrical specimens under... 

    An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model

    , Article Finite Elements in Analysis and Design ; Volume 73 , 2013 , Pages 77-95 ; 0168874X (ISSN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is developed for the modeling of the hydraulic fracture propagation in porous media using the extended finite element method in conjunction with the cohesive crack model. The governing equations, which account for the coupling between various physical phenomena, are derived within the framework of the generalized Biot theory. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. By taking the advantage of the cohesive crack model, the nonlinear fracture processes developing along the fracture process zone are simulated. The spatial discretization... 

    XFEM modeling of the effect of in-situ stresses on hydraulic fracture characteristics and comparison with KGD and PKN models

    , Article Journal of Petroleum Exploration and Production Technology ; 2022 ; 21900558 (ISSN) Esfandiari, M ; Pak, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Increasing the permeability of hydrocarbon reservoirs by creating artificial cracks that are induced by injection of fluids under high pressure is called hydraulic fracturing (HF). This method is widely used in petroleum reservoir engineering. For design of Hydraulic Fracture operations, several analytical models have been developed. KGD and PKN are the first and most used analytical models in this area. Although number of advanced softwares are developed in recent years, KGD and PKN models are still popular and have even been used in a number of softwares. In both models the characteristics of the fracture namely: fracture length (L), fracture width (w), and fluid pressure at the crack... 

    A coupled hydro-mechanical analysis for prediction of hydraulic fracture propagation in saturated porous media using EFG mesh-less method

    , Article Computers and Geotechnics ; Vol. 55, issue , January , 2014 , p. 254-266 Oliaei, M. N ; Pak, A ; Soga, K ; Sharif University of Technology
    Abstract
    The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin... 

    Numerical modeling of hydraulic fracturing in oil sands

    , Article Scientia Iranica ; Volume 15, Issue 5 , 2008 , Pages 516-535 ; 10263098 (ISSN) Pak, A ; Chan, D. H ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    Hydraulic fracturing is a widely used and efficient technique for enhancing oil extraction from heavy oil sands deposits. Application of this technique has been extended from cemented rocks to uncemented materials, such as oil sands. Models, which have originally been developed for analyzing hydraulic fracturing in rocks, are in general not satisfactory for oil sands. This is due to a high leak-off in oil sands, which causes the mechanism of hydraulic fracturing to be different from that for rocks. A thermal hydro-mechanical fracture finite element model is developed, which is able to simulate hydraulic fracturing under isothermal and non-isothermal conditions. Plane strain or axisymmetric... 

    Pressure and rate transient modeling of multi fractured horizontal wells in shale gas condensate reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Dahim, S ; Taghavinejad, A ; Razghandi, M ; Rahimi Rigi, H ; Moeini, K ; Jamshidi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Gas condensate production using technology of multi-stage hydraulically fracturing in shale gas condensate reservoirs' horizontal wells is a new topic of unconventional resources studies. Thus, shale gas condensate as a new source of energy can be considered as an important issue for development and further studies. In this work, a semi-analytical solution of gas and oil two-phase flow is presented for pressure transient analysis (PTA) and rate transient analysis (RTA) of a shale gas condensate reservoir's production data. Fluid flow assumption here is flow in a pseudo triple-porosity porous media, which are matrix, natural fractures and adsorbed gas. Adsorbed gas is a form of gas in porous... 

    Modeling of Hydraulic Fracture Propagation in Fractured Non-isothermal Saturated Porous Media with XFEM

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Reza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Investigation about Hydraulic Fracturing phenomenon in fractured porous medium which was occurred by in-situ fracture pressure upon the crack wings, owes the fact that creating enormous damages. However, it might include advantages such as increasing the rate of crude oil production from deep and high pressure/ high temperature reservoirs. On account of the fact that, existence of cracks and natural discontinuities and heat sources such as boundary of geo thermal reservoirs in porous mediums it is undeniable fact. Also, cross sectioning hydraulic fracturing cracks with natural cracks it is an obvious impact. Actually, investigation and analyzing the break throw of HF crack with natural... 

    Hydraulic Fracturing Modeling in Conventional and Unconventional Reservoirs

    , M.Sc. Thesis Sharif University of Technology Javid Shiran, Behrouz (Author) ; Badakhshan, Amir (Supervisor) ; Ghotbi, Siroos (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Unconventional fracturing applications such as long-term waterflooding at fracturing pressure, produced water re-injection and waterfracs, etc., are characterized by very high fluid leakoff velocity, long operation time and significant changes in stress, pore pressure, and/or permeability and porosity, affecting possibly large regions around the wellbore and/or fracture. These special characteristics make fracturing modeling methods developed for conventional fracturing applications inadequate. Some of the problems encountered include grid effects resulting in oscillation of fracture growth with time (limiting the stability of conventional fracture modeling models), singularity of material... 

    Impact of Stress on Permeability of Packed Hydraulic Fracture

    , M.Sc. Thesis Sharif University of Technology Taherzadeh, Dadbeh (Author) ; Shad, Saeed (Supervisor) ; Fatemi, Mobeen ($item.subfieldsMap.e)
    Abstract
    Given the broad role of oil and gas playing in the world economy, finding the hydrocarbon reservoir that economically is affordable is quite significant. Some of the unconventional oil and gas reservoirs are important from the economic point of view since they produce insufficient hydrocarbon due to either low permeability or damage during drilling and production. Hydraulic fracturing is one of the most significant methods for improving the productivity of wells and reservoirs. Hydraulic fracturing acts by affecting on reservoir rock physic. In the current century, this approach has an essential effect in enhancing the permeability and production of reservoirs by creating, extending and... 

    Numerical Modeling of Solid Transport in a Transparent Fracture

    , M.Sc. Thesis Sharif University of Technology Shad, Ehsan (Author) ; Shad, Saeed (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    Hydraulic fracturing, as an industry-leading technology, has proven to be very efficient in increasing the productivity of oil and gas wells. Therefore, this technology has been taken into attention in recent years and the number of hydraulic fracturing operations has been increasing. In order to enhance the efficiency of this technology, the final transmissibility of the fracture needs to be at the maximum possible value. To do so, proppant injection is the most common way to maintain a fracture open. To achieve a successful hydraulic fracture operation, detailed knowledge of the particle's transport and distribution inside the fracture is needed.In this study, a static fracture geometry... 

    Analysis and Optimization of Plug Slips for Oil Well Formation Fracturing

    , M.Sc. Thesis Sharif University of Technology Basiri, Amir Ali (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    In the oil industry, after drilling an oil well and laying pipes, it is time for the hydraulic fracturing process. In the process of hydraulic fracturing, a fracture must be created in the casing pipe of the well. The reason for this is that the oil from the existing reservoir enters the well so that it can be extracted. The end of the well must be blocked to cause a fracture in the well body. The reason is that after creating a fracture in the casing pipe, proppant particles are pumped together with water inside the well to keep it open. For the proppant particles to be placed inside the cracks, it is necessary to create pressure in the fracture area. To create pressure in the fracture area... 

    Modeling of cohesive crack growth in partially saturated porous media; A study on the permeability of cohesive fracture

    , Article International Journal of Fracture ; Volume 167, Issue 1 , Jan , 2011 , Pages 15-31 ; 03769429 (ISSN) Barani, O. R ; Khoei, A. R ; Mofid, M ; Sharif University of Technology
    Abstract
    Modeling the water flow in cohesive fracture is a fundamental issue in the crack growth simulation of cracked concrete gravity dams and hydraulic fracture problems. In this paper, a mathematical model is presented for the analysis of fracture propagation in the semi-saturated porous media. The solid behavior incorporates a discrete cohesive fracture model, coupled with the flow in porous media through the fracture network. The double-nodded zero-thickness cohesive interface element is employed for the mixed mode fracture behavior in tension and contact behavior in compression. The modified crack permeability is applied in fracture propagation based on the data obtained from experimental... 

    An X-FEM implementation of hydro-fracture growth in naturally fractured saturated porous media

    , Article Poromechanics 2017 - Proceedings of the 6th Biot Conference on Poromechanics, 9 July 2017 through 13 July 2017 ; 2017 , Pages 2027-2034 ; 9780784480779 (ISBN) Vahab, M ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    Abstract
    In this paper, a coupled hydro-mechanical formulation is developed for the simulation of interaction between hydraulic fractures and natural discontinuities within saturated porous media. The momentum balance equation of the bulk together with the momentum balance and continuity equations of the fluid phase are employed to obtain the fully coupled set of governing equations. The hydro-fracture is modeled for fluid flow using the Darcy law. The natural discontinuity on the other hand is modeled for both opening and closing modes which induce fluid flow and/or contact behavior along the crack edges. The discontinuity in the displacement field is incorporated by using the Heaviside enrichment... 

    A correlated fracture network: modeling and percolation properties

    , Article Water Resources Research ; Volume 43, Issue 7 , 2007 ; 00431397 (ISSN) Masihi, M ; King, P. R ; Sharif University of Technology
    2007
    Abstract
    We present a model of fractures based on the idea that the elastic free energy due to the fracture density follows a Boltzmann distribution. The resulting expression for the spatial correlation in the displacement of fractures is used as an objective function in a simulated annealing algorithm to generate realizations of correlated fracture networks. This approach determines the appropriate statistical distribution for the fractures (e.g., length distribution) rather than imposing them as is done conventionally. The model consists of two families of parallel fractures which are perpendicular under isotropic conditions. There also exists a positive correlation between the position of... 

    Prediction of Hydraulic Fracturing Technology in Naturally Fractured Rocks, by Considering Immiscible Two-phase Flow

    , Ph.D. Dissertation Sharif University of Technology Ranjbaran, Mohammad (Author) ; Taghikhani, Vahid (Supervisor) ; Ayatollahi, Shahab (Supervisor) ; Shad, Saeed (Supervisor) ; Ranjbaran, Abdolrasul ($item.subfieldsMap.e)
    Abstract
    To have a deeper understanding of Hydraulic fracturing operation, in this study four important parts in this field was developed and simulated. In the first part, continuity and momentum equations for a single phase flow in a propagating penny-shaped fracture inside an impermeable matrix was revisited based on a fixed coordinate system. Its correctness was validated against experimental data and its features were compared with the well-known lubrication theory in analytical form. The new derived continuity equation caused the fracture tip to have a positive and finite pressure while, the conventional model predicted negative infinity for that. In the second part, Finite Volume method was... 

    A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique

    , Article International Journal of Fracture ; Vol. 188, issue. 1 , 2014 , p. 79-108 Khoei, A. R ; Vahab, M ; Haghighat, E ; Moallemi, S ; Sharif University of Technology
    Abstract
    In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of u - p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discritization is performed using the extended finite element method, the time domain discritization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the... 

    An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: Numerical and experimental investigations

    , Article International Journal for Numerical Methods in Engineering ; Volume 104, Issue 6 , 2015 , Pages 439-468 ; 00295981 (ISSN) Khoei, A. R ; Hirmand, M ; Vahab, M ; Bazargan, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    In this paper, an enriched finite element technique is presented to simulate the mechanism of interaction between the hydraulic fracturing and frictional natural fault in impermeable media. The technique allows modeling the discontinuities independent of the finite element mesh by introducing additional DOFs. The coupled equilibrium and flow continuity equations are solved using a staggered Newton solution strategy, and an algorithm is proposed on the basis of fixed-point iteration concept to impose the flow condition at the hydro-fracture mouth. The cohesive crack model is employed to introduce the nonlinear fracturing process occurring ahead of the hydro-fracture tip. Frictional contact is... 

    A fully coupled element-free Galerkin model for hydro-mechanical analysis of advancement of fluid-driven fractures in porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 40, Issue 16 , 2016 , Pages 2178-2206 ; 03639061 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi-analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element-free Galerkin (EFG) mesh-less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity... 

    An X-FEM investigation of hydro-fracture evolution in naturally-layered domains

    , Article Engineering Fracture Mechanics ; Volume 191 , March , 2018 , Pages 187-204 ; 00137944 (ISSN) Vahab, M ; Akhondzadeh, S ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a computational model is developed for the simulation of hydro-fracture growth in naturally layered impervious media using the extended finite element method (X-FEM). The equilibrium equation of the bulk is solved in conjunction with the hydro-fracture inflow and continuity equations using the staggered Newton method. The hydro-fracture inflow is governed by the lubrication theory, where the permeability of the fracture is incorporated by taking advantage of the cubic law. The Eigen-function expansion method is utilised in order to develop enrichment functions suited for the asymptotic stress field in the vicinity of the singular points. An energy release rate-based criterion... 

    Effects of permeability and cementation on the pattern of hydraulically induced fractures in oil sands

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 31, Issue 2 , 2009 , Pages 149-162 ; 15567036 (ISSN) Pak, A ; Chan, D. H ; Sharif University of Technology
    2009
    Abstract
    It is generally accepted that a hydraulically induced fracture in the reservoir is approximately a plane fracture perpendicular to the direction of the in situ minor principal stress. However, field observations, in some cases, do not support the above traditional assumption. This is especially true when hydraulic fracturing technique is applied to the uncemented porous materials such as oil sands. In this article, the pattern of hydraulically induced fractures in oil sands and other geomaterials is discussed. Field observations and experimental investigation results are combined with the outcomes of the numerical simulations of hydro-fracturing in oil sands conducted by the authors to...