Loading...
Search for: hydraulic-parameters
0.005 seconds

    Development of subchannel thermal-hydraulic analysis code for dual cooled annular fuel

    , Article Progress in Nuclear Energy ; Volume 150 , 2022 ; 01491970 (ISSN) Saffari, A. H ; Esmaili, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Regarding the geometric structural characteristics of innovative dual cooled annular fuel and the possibility of heat split and flow distribution among the internal and external channels, the development of new computational tools is essential for estimating safety margins and accurate assessment of its thermal-hydraulic performance. The SADAF code (Subchannel Analysis Dual cooled Annular Fuel) by COBRA-EN code is developed for this purpose. In the SADAF code, using COBRA-EN code for subchannel analysis in internal and external subchannels, a program has been developed to compute new variables that need to be considered in the thermal-hydraulic assessment. Also, fuel heat transfer... 

    A new method to calculate efficiency of randomly-packed distillation columns and its comparison with the methods utilized in ASPEN Plus

    , Article Fuel Processing Technology ; Volume 96 , 2012 , Pages 65-73 ; 03783820 (ISSN) Sadeghifar, H ; Sadeghifar, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, a unique and applicable method was developed for calculation of efficiency (and mass and heat transfer coefficients) of randomly-packed distillation columns. This method has potential advantages; e.g., unlike all the available methods, it can calculate efficiency without using any empirical mass transfer and hydraulic correlations, and without the need to estimate the operational and hydraulic parameters of an operating column. It, therefore, will be free of errors and limitations of such empirical items and can be used for efficiency calculation of any random packing including new ones. Along with an analysis of the proposed method, the paper also presents a thorough analysis... 

    An applicable method for efficiency estimation of operating tray distillation columns and its comparison with the methods utilized in HYSYS and Aspen Plus

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 51, Issue 10 , October , 2015 , Pages 1393-1402 ; 09477411 (ISSN) Sadeghifar, H ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Developing general methods that rely on column data for the efficiency estimation of operating (existing) distillation columns has been overlooked in the literature. Most of the available methods are based on empirical mass transfer and hydraulic relations correlated to laboratory data. Therefore, these methods may not be sufficiently accurate when applied to industrial columns. In this paper, an applicable and accurate method was developed for the efficiency estimation of distillation columns filled with trays. This method can calculate efficiency as well as mass and heat transfer coefficients without using any empirical mass transfer or hydraulic correlations and without the need to... 

    Evaluation of methods for estimating aquifer hydraulic parameters

    , Article Applied Soft Computing Journal ; Volume 28 , March , 2015 , Pages 541-549 ; 15684946 (ISSN) Bateni, S. M ; Mortazavi Naeini, M ; Ataie Ashtiani, B ; Jeng, D. S ; Khanbilvardi, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    An accurate estimation of aquifer hydraulic parameters is required for groundwater modeling and proper management of vital groundwater resources. In situ measurements of aquifer hydraulic parameters are expensive and difficult. Traditionally, these parameters have been estimated by graphical methods that are approximate and time-consuming. As a result, nonlinear programming (NLP) techniques have been used extensively to estimate them. Despite the outperformance of NLP approaches over graphical methods, they tend to converge to local minima and typically suffer from a convergence problem. In this study, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) methods are used to identify... 

    A new and applicable method to calculate mass and heat transfer coefficients and efficiency of industrial distillation columns containing structured packings

    , Article Energy ; Volume 36, Issue 3 , 2011 , Pages 1415-1423 ; 03605442 (ISSN) Sadeghifar, H ; Safe Kordi, A. A ; Sharif University of Technology
    2011
    Abstract
    Most of the methods developed for efficiency estimation of distillation columns were based on the empirical mass transfer and hydraulic relations correlated to laboratory data. Therefore, these methods cannot estimate efficiency of industrial columns with sufficient accuracy. In this paper, a new and applicable method was developed for calculation of efficiency (and mass and heat transfer coefficients) of distillation columns containing structured packings. This method has potential advantages; e.g., it can calculate efficiency without using any empirical mass transfer and hydraulic correlations and models, and without the need to estimate the operational and hydraulic parameters of column.... 

    Calculation and analysis of thermal-hydraulics fluctuations in pressurized water reactors

    , Article Annals of Nuclear Energy ; Volume 76 , 2015 , Pages 75-84 ; 03064549 (ISSN) Malmir, H ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Analysis of thermal-hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal-hydraulics surveillance and diagnostics. In this paper, the thermal-hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal-hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of... 

    Application of FFTBM with signal mirroring to improve accuracy assessment of MELCOR code

    , Article Nuclear Engineering and Design ; Volume 308 , 2016 , Pages 238-251 ; 00295493 (ISSN) Saghafi, M ; Ghofrani, M. B ; D'Auria, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This paper deals with the application of Fast Fourier Transform Base Method (FFTBM) with signal mirroring (FFTBM-SM) to assess accuracy of MELCOR code. This provides deeper insights into how the accuracy of MELCOR code in predictions of thermal-hydraulic parameters varies during transients. The case studied was modeling of Station Black-Out (SBO) accident in PSB-VVER integral test facility by MELCOR code. The accuracy of this thermal-hydraulic modeling was previously quantified using original FFTBM in a few number of time-intervals, based on phenomenological windows of SBO accident. Accuracy indices calculated by original FFTBM in a series of time-intervals unreasonably fluctuate when the... 

    Development of a Computer Code for Thermo Hydraulics Analysis of Prismatic High Temperature Gas Cooled Reactors

    , M.Sc. Thesis Sharif University of Technology Naderi, Mohammad Hossein (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Jafari, Jalil (Supervisor)
    Abstract
    A prismatic high temperature gas-cooled reactor (HTGR), which is a graphite moderated, helium-cooled reactor, is a promising candidate for next generation nuclear power plant in that it enables applications, such as hydrogen production or process heat for petrochemical by supplying heat with core outlet temperatures as high as 1000°C. A Thermal Hydraulic Analysis Code (THAC) for gas-cooled reactors has been developed. THAC implicitly solves heat transfer equation of fuel, graphite block and helium. Three types of fuel pins were considered; solid fuel pin, fuel pins with inside holes and annular fuels with coolant flow from its inside and outside surfaces. THAC predicts axial and radial... 

    Estimating the drainage rate from surface soil moisture drydowns: application of DfD model to in situ soil moisture data

    , Article Journal of Hydrology ; Volume 565 , 2018 , Pages 489-501 ; 00221694 (ISSN) Jalilvand, E ; Tajrishy, M ; Brocca, L ; Massari, C ; Ghazi Zadeh Hashemi, S ; Ciabatta, L ; Sharif University of Technology
    Abstract
    The large heterogeneity in soil surface conditions makes it impracticable to obtain reliable estimates of soil hydraulic parameters for areas larger than few squared kilometers. However, identifying these parameters on a global scale is essential for many hydrological and climatic applications. In this study, a new approach named Drainage from Drydown (DfD) is proposed to estimate the coefficients of drainage using soil moisture observations. DfD firstly selects multiple drydown events when surface runoff and evapotranspiration rates are negligible compared to the drainage rate. Secondly, by inverting the soil water balance equation, the drainage coefficients are obtained. Synthetic... 

    An improved Kalman filtering approach for the estimation of unsaturated flow parameters by assimilating photographic imaging data

    , Article Journal of Hydrology ; Volume 590 , 2020 Rajabi, M. M ; Belfort, B ; Lehmann, F ; Weill, S ; Ataie Ashtiani, B ; Fahs, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As a non-invasive method, photographic imaging techniques offer some interesting potentials for characterization of soil moisture content in unsaturated porous media, enabling mapping at very fine resolutions in both space and time. Although less explored, the wealth of soil moisture data provided by photographic imaging is also appealing for the estimation of unsaturated soil hydraulic parameters through inverse modeling. However, imaging data have some unique characteristics, including high susceptibility to noise, which can negatively affect the parameter estimation process. In this study a sequential data assimilation approach is developed to simultaneously update soil moisture content...