Loading...
Search for: hydrocarbon-systems
0.006 seconds

    Experimental Investigation on the Effect of Asphaltene Types on the Interfacial Tension of CO2-Hydrocarbon Systems

    , Article Energy and Fuels ; Volume 29, Issue 12 , 2015 , Pages 7941-7947 ; 08870624 (ISSN) Mahdavi, E ; Zebarjad, F. S ; Ayatollahi, S ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Interfacial tension (IFT) is known as the critical parameter affecting the efficiency of CO2 flooding during the enhanced oil recovery (EOR) process. Besides, the asphaltene precipitation phenomenon is reported as the most significant problem during CO2 injection into asphaltenic oil reservoirs. Accordingly, it is important to examine the effect of asphaltene precipitation on the IFT behavior of the oil-CO2 system at reservoir conditions. The main objective of this research work is to study of the effect of asphaltene and its type on the IFT behavior of the oil-CO2 system. The IFT between pure CO2 and a model oil both with and without asphaltene was measured using an axisymmetric drop shape... 

    Experimental investigation on the effect of asphaltene types on the interfacial tension of co2-hydrocarbon systems

    , Article Energy and Fuels ; Volume 29, Issue 12 , November , 2015 , Pages 7941-7947 ; 08870624 (ISSN) Mahdavi, E ; Zebarjad, F. S ; Ayatollahi, S ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Interfacial tension (IFT) is known as the critical parameter affecting the efficiency of CO2 flooding during the enhanced oil recovery (EOR) process. Besides, the asphaltene precipitation phenomenon is reported as the most significant problem during CO2 injection into asphaltenic oil reservoirs. Accordingly, it is important to examine the effect of asphaltene precipitation on the IFT behavior of the oil-CO2 system at reservoir conditions. The main objective of this research work is to study of the effect of asphaltene and its type on the IFT behavior of the oil-CO2 system. The IFT between pure CO2 and a model oil both with and without asphaltene was measured using an axisymmetric drop shape... 

    A new multiphase and dynamic asphaltene deposition tool (MAD-ADEPT) to predict the deposition of asphaltene particles on tubing wall

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Naseri, S ; Jamshidi, S ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As expounded, the precipitation and deposition of asphaltene particles in pipelines has been proved to be the most challenging flow assurance problem due to its unknown and complex behaviors. In this work, a new multicomponent, multiphase and dynamic tool was developed to model the aggregation and deposition of asphaltene particles in a bulk medium. The multiphase and dynamic asphaltene deposition tool, shortened as MAD-ADEPT is, in fact, a modified version of the previously developed ADEPT. The new tool was developed to make the asphaltene deposition and aggregation concepts in oil production wells more predictable. To tackle the complexity of the asphaltene problem, a bespoke algorithm was...