Loading...
Search for: hydrodynamic-behavior
0.005 seconds

    Hydrodynamic analysis of trimaran vessels

    , Article Polish Maritime Research ; Volume 15, Issue 1 , June , 2008 , Pages 11-18 ; 12332585 (ISSN) Javanmardi, M ; Jahanbakhsh, E ; Seif, M ; Sayyaadi, H ; Sharif University of Technology
    2008
    Abstract
    Trimaran vessels are developed for different applications and hydrodynamic behavior of such vessels is different than usual mono-hulls. In this paper hydrodynamic resistance and maneuvering of a trimaran with Wigley body form are investigated. The effects of outriggers position in four different longitudinal and two transverse locations are studied. For hydrodynamic simulations a CFD code has been developed and used. This code is capable for simulating three dimensional, time dependent, two phases, viscous flow coupled with rigid body motion. Formulation and solution algorithm are described in detail. Different case studies have been performance and numerical results have shown good... 

    A novel model for predicting the dense phase behavior of 3D gas-solid fluidized beds

    , Article Chemical Engineering and Technology ; Volume 37, Issue 1 , January , 2014 , Pages 103-112 ; ISSN: 09307516 Movahedirad, S ; Ghafari, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    A novel phenomenological discrete bubble model was developed and tested for prediction of the hydrodynamic behavior of the dense phase of a 3D gas-solid cylindrical fluidized bed. The mirror image technique was applied to take into account the effects of the bed wall. The simulation results were validated against experimental data reported in the literature that were obtained by positron emission particle tracking. The time-averaged velocity profiles of particles predicted by the developed model were found to agree well with experimental data. The initial bubble diameter had no significant influence on the time-averaged circulating pattern of solids in the bed. The model predictions clearly... 

    A Study on the effects of thermodynamic nonideality and mass transfer on multi-phase hydrodynamics using CFD methods

    , Article World Academy of Science, Engineering and Technology ; Volume 58 , 2009 , Pages 627-632 ; 2010376X (ISSN) Irani, M ; Bozorgmehry Boozarjomehry, R ; Pishvaie, M. R ; Tavasoli, A ; Sharif University of Technology
    2009
    Abstract
    Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt's law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had... 

    Supersonic separator's dehumidification performance with specific structure: Experimental and numerical investigation

    , Article Applied Thermal Engineering ; Volume 179 , October , 2020 Majidi, D ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Supersonic separators are used in gas separation processes such as dehumidification of humid air due to high performance and its good pressure recovery. In the present study, a comprehensive numerical and experimental investigation on the hydrodynamic behavior of air as working fluid and dehumidification performance of supersonic separator have been accomplished. The effect of the operational parameters on shockwave's position are examined. The outcomes show that by increasing the pressure level of supersonic separator, relative error between numerical and experimental results decreases from 20% to less than 10%. The effect of the operational parameters and humidity of inlet air on the... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Comparing three image processing algorithms to estimate the grain-size distribution of porous rocks from binary 2D images and sensitivity analysis of the grain overlapping degree

    , Article Special Topics and Reviews in Porous Media ; Volume 6, Issue 1 , 2015 , Pages 71-89 ; 21514798 (ISSN) Rabbani, A ; Ayatollahi, S ; Sharif University of Technology
    Begell House Inc  2015
    Abstract
    The grain-size distribution (GSD) of porous rocks is important in order to better understand their hydrodynamic behavior. Clear and precise GSD data can be used to computationally reconstruct rock structure for further analysis. In this study, three main algorithms for image analysis have been examined to estimate the GSD of clastic rocks. The main challenge in GSD determination from images is in detecting overlapping grains and measuring their size separately. In this study, three previously developed image processing algorithms are implemented on two-dimensional (2D) binary images of rocks in order to compare the obtained GSD from each of the methods, i.e., the mean intercept length... 

    Impact of thermodynamic non-idealities and mass transfer on multi-phase hydrodynamics

    , Article Scientia Iranica ; Volume 17, Issue 1 C , JANUARY-JUNE , 2010 , Pages 55-64 ; 10263098 (ISSN) Irani, M ; Pishvaie, M. R ; Sharif University of Technology
    2010
    Abstract
    Considering the non-ideal behavior of fluids and their effects on hydrodynamic and mass transfer in multiphase. flow is very essential. Simulations were performed that take into account the effects of mass transfer and mixture non-ideality on the hydrodynamics reported by Bozorgmehry et al In this paper, by assuming the density of phases to be. constant and using Raoult's law instead of EOS and the fugacity coefficient definition, respectively, for both liquid and gas phases, the importance of nonideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T = 323 K and P = 445 kPa) also indicated that the assumption of constant density... 

    Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds

    , Article Powder Technology ; Volume 338 , 2018 , Pages 563-575 ; 00325910 (ISSN) Rasteh, M ; Farhadi, F ; Ahmadi, G ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The particle size distribution (PSD) is known as an important parameter affecting the hydrodynamic behavior of fluidized beds. In this study, extensive experimental data for fluidization of particles with different PSDs in tapered fluidized beds was presented. In the experimentations, three Geldart B powders with four average diameters and various PSDs were used. The experimental results showed that the minimum fluidization velocity (Umf) for particles with flat and binary size distributions were roughly the same; moreover, they were up to 25% larger than the Umf values for narrow cut particle size distribution. The Umf values for Gaussian size distribution were lower than those of narrow... 

    CFD simulation of gas–solid flow patterns in a downscaled combustor-style FCC regenerator

    , Article Particuology ; Volume 39 , 2018 , Pages 96-108 ; 16742001 (ISSN) Azarnivand, A ; Behjat, Y ; Safekordi, A. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    To investigate the gas–solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic effects were taken into consideration. These considerations are the novelties of the present study. Applying the Eulerian–Eulerian approach, a three-dimensional computational fluid dynamics (CFD) model of the regenerator was developed. Using this model, various aspects of the hydrodynamic behavior that are potentially effective in catalyst regeneration were investigated. The CFD simulation results show that at various sections the gas–solid flow patterns exhibit different... 

    A unified computational method for simulating dynamic behavior of planing vessels

    , Article China Ocean Engineering ; Volume 23, Issue 3 , 2009 , Pages 517-528 ; 08905487 (ISSN) Seif, M. S ; Jahanbakhsh, E ; Panahi, R ; Karimi, M. H ; Sharif University of Technology
    2009
    Abstract
    High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong coupling between rigid body motions and hydrodynamic analysis. In addition, free surface should be predicted with good accuracy for each time step. In this paper, velocity and pressure fields are coupled by use of the fractional step method. On the basis of integration of the two-phase viscous flow induced stresses over the hull, acting loads (forces and moments) are calculated. With the strategy of boundary-fitted body-attached mesh and calculation of 6-DoF motions in each time... 

    Thermo-hydrodynamic modeling of a single bubble nozzle-diffuser phase change micropump

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART B , June , 2008 , Pages 1237-1243 ; 0791848345 (ISBN); 9780791848340 (ISBN) Saidi, M. S ; Saeedi, M. H ; Pirouzpanah, S ; Nikparto, A ; ASME ; Sharif University of Technology
    2008
    Abstract
    Nowadays, the potential of phase change process in liquids at micro scale attracts the scientists to fabricate this type of micropumps. Such micropumps have widely found applications in industrial and medical equipments such as recent printers. Not using mechanical parts such as valves, and having small sizes and high and controllable mass flow rates are the advantages of these micropumps. In the nozzle diffuser phase change micropump a heat pulse generates a bubble in a chamber; therefore, the pressure pulse which is generated by the bubble, causes the bubble to expand suddenly with high rate, then the pressure of bubble reduces to the vapor pressure and causes negative rate of expansion to... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; Volume 40, Issue 2 , 2022 , Pages 233-242 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Three-dimensional simulation of hydrodynamics in a rotating disc contactor using computational fluid dynamics

    , Article Chemical Engineering and Technology ; Volume 32, Issue 1 , 2009 , Pages 93-102 ; 09307516 (ISSN) Ghaniyari Benis, S ; Hedayat, N ; Ziyari, A ; Kazemzadeh, M ; Shafiee, M ; Sharif University of Technology
    2009
    Abstract
    The 3D simulation of the hydrodynamic behavior of a rotating disc contactor (RDC) by means of computational fluid dynamics (CFD) was investigated for the n-butanol-succinic acid-water (BSW) system. For the two-phase liquid-liquid flow, the velocity distribution of the continuous phase and drop size distributions were determined using the k-ω turbulence model in conjunction with the Eulerian-Eulerian approach and MUSIG model. In this system in which the holdup of the dispersed phase is low, the continuous phase velocity was computed by simultaneously solving the Navier-Stokes equations beside the different models of turbulence. The motions of the dispersed phase was calculated while...