Loading...
Search for: hydrodynamic-loads
0.004 seconds

    A new formulation for equivalent hydrodynamic modeling of the Jack-up legs

    , Article Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Oslo, 23 June 2002 through 28 June 2002 ; Volume 1 , 2002 , Pages 605-611 Daghigh, M ; ASME ; Sharif University of Technology
    2002
    Abstract
    Regulations of offshore structures suggest the application of Morison type equation for the estimation of forces induced by wave and current on the slender bodies of Jacket and Jack-up structures. However, common values of hydrodynamic coefficients are rarely defined in two different regulations. Estimation of global responses of Jack-up structure, the simplified geometrical model is used, therefore we will try to modify the DNV formulations in order to estimate the hydrodynamic forces on equivalent pile. Finally, the forces on the real structure and the equivalent pile model are compared and it has been shown that the approximation of the inertia forces has more accuracy comparing to the... 

    An efficient system identification approach to estimate unsteady loads on cavitator plates

    , Article Ocean Engineering ; Volume 207 , 2020 Tehrani, M. A ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A new and efficient model for calculation of the unsteady hydrodynamic loads on an oscillating plate in two-dimensional flow is proposed. In order to compute the hydrodynamic loads, an unsteady hydrodynamic model is derived using the boundary-element method along with the potential flow assumption. To this aim, the steady boundary of cavity is determined by a full-nonlinear iterative procedure. Thereafter, assuming that amplitude and frequency of oscillations are so that the length of cavity in unsteady flow remains intact, simulation of the unsteady hydrodynamic flow is performed by imposing some velocity perturbations over the steady cavity solutions. Consequently, based on this...