Search for: hydrogel-scaffold
0.006 seconds

    Mechanical Properties Enhancement of Hydrogel Scaffolds Using Combination of Electrospun Nanofibers

    , M.Sc. Thesis Sharif University of Technology Moghaddam Deymeh, Saeed (Author) ; Mashayekhan, Shohreh (Supervisor)
    Cardiovascular disease is responsible for a majority of health problem in developing countries. Heart diseases are the leading cause of death in the United State with approximately 40% of the death occurs by heart failures and coronary artery defects. Myocardial infarction is one of the diseases that occurs by coronay artery blockage. Cardiac tissue engineering (CTE) is an emerging field that holds great promise towards the development of innovative treatment strategies for heart disease. There are two common scaffolds for CTE, electrospun fiber mats and hydrogels. Although fibers are known as 3D environment for cells, they actually act as a 2D surface, because of lack of cell infilteration.... 

    Stem Cell Proliferation and Differentiation in Bioreactors

    , M.Sc. Thesis Sharif University of Technology Rezaei, Maryam (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor)
    In this study, differentiation of rabbit embryonic-derived mesenchymal stem cells to osteogenic cells has been characterized. Bone tissue engineering is based upon the understanding of bone tissue construct and it’s formation in-vivo, and the Preparation of tissue engineered bone constructs to repair large size defects is it’s major goal. We sought to investigate the combined effect of three elemnts of tissue engineering: cells, scaffolds and growth factors. Mesenchymal stem cells are unspecialized cells which due to their unlimited self-renewal capacity and the remarkable ability to differentiate along multiple linage pathways are natural choice for application in tissue repair and... 

    Comparative Examination and Preparation of Polymeric Hydrogels in Order to use as Cellular Scaffold

    , M.Sc. Thesis Sharif University of Technology Nazaripouya, Amir (Author) ; Alemzadeh, Iran (Supervisor) ; Sharifi Aghdas, Farzane (Supervisor) ; Mashayekhan, Shohre (Supervisor)

    Comparing Effects of Natural Antibiotics and Anti Bacterial Materials in Burn Wound Infections with Nanoparticles and Skin Scaffold

    , M.Sc. Thesis Sharif University of Technology Ramezani, Bita (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Burns are one of the most important accidents related to human health. Due to the intense physical and mental complications and high fatality rate associated with them, receiving proper treatment is of paramount importance. The control of infection in wounds would cure and eliminates the effect of wounds and treatment of skin lesions with engineered scaffolds can be an effective method. The purpose of this project is proposing a hydrogel scaffold based on natural polymers of oxidized alginate and gelatin loaded with an herbal drug to control infection and treat burn wounds. For this purpose, the Iranian Oak extract that it's main content is Tanin and PolyPhenolinc materials, was prepared and... 

    Fabrication of Composite Scaffold Composed of Cartilage Extracellular Matrix/Chitosan with High Mechanical Strength for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Khozaei Ravari, Mojtaba (Author) ; Mashayekhan, Shohreh (Supervisor) ; Baghban Eslami Nejad, Mohammad Reza (Supervisor)
    Methods that has been used for articular defects are faced with many limitations, so new therapies based on tissue engineering were taken into consideration in recent years. However, tissue engineering also encounters challenges regarding optimal scaffold construction and suitable cell source selection. Mature harvested chondrocytes are limited in number and may lose their chondrogenic potential in several cultures, leading to dedifferentiation. In addition, using stem cells also presents unique challenges associated with them, among which hypertrophic differentiation is the most substantial problem. Choosing the appropriate biomaterial similar to the cartilage structure with sufficient... 

    Fabrication of Scaffold with Microfluidic Channels for Heart Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Momeni, Ehsan (Author) ; Mashayekhan, Shohreh (Supervisor) ; Saadatmand, Maryam (Supervisor)
    Myocardial infarction (MI) is one of the diseases caused by the temporary or permanent cramp of major coronary arteries. Due to this blockage, blood flow to the heart's myocardial tissue is greatly reduced and finally the person suffered from a Heart stroke (HS). Heart tissue engineering is a promising approach, based on the combination of cells and suitable biomaterials to develop and create heart-like biological substitutes. Since high cardiac cell density, providing metabolic needs like oxygen and nutrients was a challenge. So creation of blood vessel networks within this type of designed tissue has been considered very much.The purpose of this project is to construct scaffolds with... 

    Development of an Optimized Skin Scaffold Capable of Growth Factor Release for Acute Skin Wound Healing

    , M.Sc. Thesis Sharif University of Technology Sarmadi, Morteza (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keykhosrow (Supervisor)
    As the first barrier in front of external damages, skin is prone to the largest number of damages applied to one’s body. Acute wounds are considerably prevalent world-widely, imposing very high costs to governments. The purpose of the current project, is to propose a novel skin scaffold capable of growth factor delivery for enhancing the wound healing process in acute wounds. Such a scaffold should be able to decrease the required time for healing process, also to improve the quality of the regenerated skin compared to available commercial products. Furthermore, it should be highly biocompatible, biodegradable, and non-toxic. In this project, to manufacture the artificial skin scaffold, a... 

    Fabrication and Optimizing a Bilayer Scaffold with the Ability to Release Growth Factors in Aim to Treating Injuries in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Seifi, Saeed (Author) ; Shamloo, Amir (Supervisor) ; Hosseini, Vahid (Supervisor)
    Skin, as the largest organ of the body and the first protector against external injuries, plays an important role in maintaining human health. Therefore, providing a method for complete treatment of skin lesions is very important. In the last century, tissue engineering approaches, with the introduction of skin scaffolds, have been instrumental in the process of skin tissue regeneration and treatment. The aim of the present study is to construct an optimal bilayer scaffold to mimic the two outer layer of the skin (epidermis and dermis). Besides, the effects of placenta extract on acceleration of wound healing was investigated by an in-vivo test. both layer of scaffold are porous hydrogels,... 

    Design of Injectable Hydrogel Scaffold based on Smart Polymer in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Mozhdehbakhsh Mofrad, Yasaman (Author) ; Shamloo, Amir (Supervisor)
    Nerve damage is one of the factors affecting the quality of life of patients. The nervous system does not have the ability to repair large injuries, and autologous transplantation, which is the standard treatment method for nerve injuries, is faced with a shortage of donors and a decrease in the function of the donor site. Tissue engineering hydrogels, due to their similarity to the natural tissue of the stomatal body, are a hope for the repair of nerve tissue. In this research, an injectable, minimally invasive and temperature-sensitive hydrogel based on chitosan-etaglycerophosphate-sodium hydrogen carbonate salt or trisodium phosphate salt containing aligned nanofibers made of gelatin and... 

    Design of a Double-Network Hydrogel Scaffold for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Ganjali, Amir Reza (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor)
    Osteoarthritis has always been one of the most common diseases in middle age because it causes severe pain and inflammation in the joints of the body. Cartilage tissue does not have the ability to repair itself. For this reason, fabricating and designing the most efficient, least-expensive, and most convenient methods for the treatment of cartilage defects is always an important issue. Today, there are surgical and injectable methods to relieve pain and initiate the body's natural healing response. But due to the many disadvantages and limitations of these methods, tissue engineering science has turned to modifying these methods or providing new methods. One of these methods is the use of... 

    Study and Fabrication of a Multilayer Scaffold Containing Biological Agents for Skin Wounds Regeneration

    , Ph.D. Dissertation Sharif University of Technology Hajiabbas, Maryam (Author) ; Alemzadeh, Iran (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shamloo, Amir (Co-Supervisor)
    In recent years, it is expected that the fabrication of multilayer scaffolds and the use of different methodologies in one product can be a new progressing method in skin substitute production. Accordingly, this project aims to fabricate a bilayered composite scaffold with a combination of hydrogel and electrospinning method. We have tried to prepare a scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) without using corrosive solvents and toxic crosslinking agents as a scaffold and drug delivery system. As different biological, chemical, physical, and mechanical factors play a vital role in the healing process, we have characterized the proposed scaffold via DSC,... 

    Design and Manufacture of a Scaffold with a Drug Delivery System for a Better Tissue Wound Healing Process

    , M.Sc. Thesis Sharif University of Technology Shaygani, Hossein (Author) ; Shamloo, Amir (Supervisor) ; Aryanpour, Masoud (Supervisor)
    Articular cartilage is devoid of blood vessels, lymphatics, and nerves which gives it a very limited intrinsic healing and repair capabilities. Being under constant harsh biomechanical environment, makes maintaining the health of articular cartilage a vital principle in having healthy joints. Tissue engineering as a method for regeneration of damaged tissue have attracted a lot of attention. Articular cartilage engineered scaffolds act as a macro scale drug delivery system which in addition to having a good mechanical properties similar to that of cartilage tissue, have to provide a highly porous environment for cell migration and proliferation. The aim of this study is to fabricate a drug... 

    Construction of A Polymeric Scaffold for Dental Pulp Regeneration

    , Ph.D. Dissertation Sharif University of Technology Noohi, Parisa (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Saadatmand, Maryam (Supervisor) ; Nekoofar, Mohammad Hossein (Supervisor)
    Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy pulp-like tissue. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide... 

    Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres

    , Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) Shamloo, A ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within...