Loading...
Search for: hydrogen-gas-sensors
0.004 seconds

    Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors

    , Article International Journal of Hydrogen Energy ; Volume 39, Issue 15 , 15 May , 2014 , Pages 8169–8179 Esfandiara, A. (Ali) ; Iraji Zada, A. (Azam) ; Akhavana, O. (Omid) ; Ghasemic, S. (Shahnaz) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostructured form, while Pd–WO3/PRGO exhibited a hierarchical nanostructure with a high surface area. Gas sensing properties of thin films of these materials were studied for different hydrogen concentrations (from 20 to 10,000 ppm) at various temperatures (from room temperature to 250 °C). Although adding GO in the Pd–WO3, after hydrothermal process could increase the film conductivity, gas sensitivity... 

    The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , October , 2012 , Pages 15423–15432 Esfandiar, A. (Ali) ; Ghasemi, S. (Shahnaz) ; Irajizada, A. (Azam) ; Akhavana, O. (Omid) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time... 

    Improving Hydrogen Sensing by Adding Additives in Nanostructure WO3 Films

    , M.Sc. Thesis Sharif University of Technology Fardindoost, Somayyeh (Author) ; Iraji Zad, Azam (Supervisor) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    The present work emphasizes on hydrogen resistance- sensing properties of WO3 films prepared by Sol-gel routs. The sol-gel is a simple and low cost rout which makes film with high homogeneity and low processing temperature .To improve Hydrogen sensing we modified WO3 films with Pd catalysts by Sol-gel and Electroless methods. AFM , EDX, SEM , XPS , XRD , were applied to analyze structure, morphology and Chemical composition of the fabricated thin films. We measured resistance sensing behavior of prepared films in exposure to different concentration of Hydrogen. All the films were tested under the same conditions. We measured resistance sensing in exposure to concentration below 10000 ppm... 

    Synthesis of Palladium Nanowires for Hydrogen Gas Sensor by Field Ionization

    , M.Sc. Thesis Sharif University of Technology dolatkhah, Naeme (Author) ; Irajizad, Azam (Supervisor)
    Abstract
    The interesting properties of metallic nanowires provide many applications in electronic sensors. In this project, we have synthesized Pd nanowires using electrodeposition method. These nanowires are useful for hydrogen sensors by measuring field ionization current in gas. In this project, Pd nanowires were synthesized by electrochemical deposition method in PCT template with 100 nm pore size. The used solution was contained 2mM PdCl2 + 0.1M HCl. The best reduction potential was determined about -0.2V and the best time for synthesizing nanowires was 7 minutes. Chronoampermetric diagrams showed four steps, capacitive current, growth in the holes, reaching to the surface of PCT and the growth... 

    Investigation of hydrogen sensing properties and aging effects of Schottky like Pd/porous Si

    , Article Journal of Sensors and Actuators B: Chemical ; Volume 146, Issue 1 , 8 April , 2010 , PP. 53–60 Razi, F. (Fatemeh) ; Iraji Zad, A. (Azam) ; Rahimi, F. (Fereshteh) ; Sharif University of Technology
    Abstract
    We prepared porous silicon samples coated by continuous palladium layer in electroless process. Scanning electron microscopy (SEM) showed cauliflower-shape Pd clusters on the surface. I–V curves of Schottky like Pd/porous Si samples were measured in air and in hydrogen. These measurements showed a metal–interface–semiconductor configuration rather than an ideal Schottky diode. Variations of the electrical current in the presence of diluted hydrogen at room temperature revealed that the samples can sense hydrogen in a wide range of concentration (100–40,000 ppm) without any saturation behavior. Hydrogen sensing properties of these samples were investigated at room temperature for a duration... 

    Fabrication and Characterization of Hydrogen Gas sensors Based on Metal Oxides/Carbon Nanotubes Hybrid System

    , Ph.D. Dissertation Sharif University of Technology Ghasempour, Roghayeh (Author) ; Iraji zad, Azam (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    We have studied binary structures contain; as grown thin film of carbon nanotubes (CNTs) , CNT rich polymeric composite, Pd doped WO3 thin film, and also hybrid thin film which was mixed CNTs and WO3 nanoparticles and ternary structure which was obtained by adding Pd to hybrid structure as a hydrogen gas sensor. The structure, morphology, chemical composition and quality of as–grown and functionalized CNTs and sensitive films were studied by SEM, TEM, XRD, XPS, DLS, FTIR and Raman spectroscopy methods. Variation of film’s electrical resistance after exposure gases is utilized as the principle of gas sensing. Multi-Walled Carbon Nanotube (MWCNTs) films were obtained by Thermal Chemical Vapor... 

    Investigation of hydrogen sensing properties and aging effects of Schottky like Pd/porous Si

    , Article Sensors and Actuators, B: Chemical ; Volume 146, Issue 1 , 2010 , Pages 53-60 ; 09254005 (ISSN) Razi, F ; Iraji-Zad, A ; Rahimi, F ; Sharif University of Technology
    Abstract
    We prepared porous silicon samples coated by continuous palladium layer in electroless process. Scanning electron microscopy (SEM) showed cauliflower-shape Pd clusters on the surface. I-V curves of Schottky like Pd/porous Si samples were measured in air and in hydrogen. These measurements showed a metal-interface-semiconductor configuration rather than an ideal Schottky diode. Variations of the electrical current in the presence of diluted hydrogen at room temperature revealed that the samples can sense hydrogen in a wide range of concentration (100-40,000 ppm) without any saturation behavior. Hydrogen sensing properties of these samples were investigated at room temperature for a duration... 

    The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , 2012 , Pages 15423-15432 ; 03603199 (ISSN) Esfandiar, A ; Ghasemi, S ; Irajizad, A ; Akhavan, O ; Gholami, M. R ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol-gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti-C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time... 

    Morphology and hydrogen sensing studies of the electrodeposited nanostructure palladium on porous silicon

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 892-901 ; 14757435 (ISSN) Astaraie, F. R ; Iraji zad, A ; Taghavi, N. S ; Abbaszadeh, D ; Dolati, A ; Mahshid, S. S ; Sharif University of Technology
    2009
    Abstract
    We have investigated hydrogen sensing properties of electrodeposited Pd clusters on macroporous silicon substrates. Porous layer was prepared by electrochemical etching of p-type silicon (100) wafer in organic electrolyte DMF (dimethylformamide) diluted by HF (%95 Vol. %). The deposition of Pd was carried out by linear voltammetry (LV) technique. This technique was taken for reduction of palladium ions in the potential range from 0.4 V to -1 V vs. SCE, at the scan rate of 20 mV s-1. Some samples were annealed at 300°C for an hour in air to study the effect of heat treatment on their gas sensitivity. Surface structural and chemical properties of the samples were characterised using Scanning...