Loading...
Search for: hydrothermal-treatments
0.006 seconds

    Influence of metal loading and reduction temperature on the performance of mesoporous NiO–MgO–SiO2 catalyst in propane steam reforming

    , Article Journal of the Energy Institute ; Volume 96 , 2021 , Pages 38-51 ; 17439671 (ISSN) Barzegari, F ; Farhadi, F ; Rezaei, M ; Kazemeini, M ; Keshavarz, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this research, a series of NiO–MgO–SiO2 catalyst samples with various nickel contents (5, 10, 15 and 20 wt %) were prepared by a co-precipitation method followed by a hydrothermal treatment and employed in propane steam reforming. The analyses revealed that the enhancement of the nickel content up to 15 wt % improved the propane conversion to 98.6% at 550 °C. Nonetheless, further increase in the nickel loading reduced the catalyst activity due to the formation of larger and more poorly dispersed active sites. Besides, 15 wt % nickel loading led to the high resistance against coke deposition with no detectable carbon on the catalyst surface. In addition, it was revealed that, the decrease... 

    Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1793-1798 ; 02728842 (ISSN) Faghihi Sani, M. A ; Arbabi, A ; Mehdinezhad Roshan, A ; Sharif University of Technology
    2013
    Abstract
    Surface modification of titanium implants is recently considered by several researchers. In this study, PEO was performed over commercially Ti-6Al-4V alloy pellets in an aqueous electrolyte containing calcium acetate (C.A.) and calcium glycerphosphate (Ca-GP) with a Ca/P molar ratio of 6.8, and applying current density of 0.212 A/cm2, frequency of 100 Hz and duty ratio of 60% for 4 min. In the next step, hydrothermal treatments were carried out for various durations and at different temperatures inside an autoclave chamber containing a NaOH solution with pH of 11.5. XRD and SEM results confirmed formation of needle-shaped HAp after all hydrothermal conditions. Maximum intensity of HAp peaks... 

    Enhancement in thermal and hydrothermal stabilities of novel mesoporous MCM-41

    , Article Journal of Porous Materials ; Volume 19, Issue 6 , 2012 , Pages 979-988 ; 13802224 (ISSN) Jomekian, A ; Mansoori, S. A. A ; Bazooyar, B ; Moradian, A ; Sharif University of Technology
    2012
    Abstract
    A novel mesoporous MCM-41 with remarkable wide channel diameters and thick walls was synthesized. The procedure involved the acid-catalyzed hydrolysis of tetraetheylorthosilicate (TEOS) in a water/ethanol/isopropoanol solvent mixture while employing 1-hexadecylamine as a templating agent and mesitylene as an auxiliary agent. After removal of the template by either extraction or calcination at 560 °C, the resulting mesoporous materials had surface areas of 1,289 and 1,210 m2/g.The channel diameterswere found to be 46.8-51.2 Å ,while thewall thicknesses were 20.9-21.1 Å. X-ray powder diffraction proved that the synthesized mesoporous structure belongs to MCM-41 family. Notably, they displayed... 

    Synthesis of magnetic mesoporous nanocomposites: A promising candidate for diagnostic and therapeutic biomedical applications

    , Article Materials Chemistry and Physics ; Volume 167 , November , 2015 , Pages 201-208 ; 02540584 (ISSN) Bagherzadeh, E ; Hosseini, H. R. M ; Khakzadian, J ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In the present research, iron oxide nanoparticles were synthesized through the hydrothermal method, and the influence of processing parameters such as pH of the initial coprecipitation reaction, time and temperature of hydrothermal treatment was studied. The magnetic iron oxide nanoparticles were coated with a negatively charged, thin layer of silica. The product is then coated with a layer of mesoporous silica. As a result of the electrostatic attraction between the cationic CTAB and the primary silica coating, the formation of mesoporous silica would be mainly localized on the surface of nanoparticles. Calcination was performed in an argon atmosphere tube furnace at 550 °C, through which... 

    Hydrothermally synthesized CuO powders for photocatalytic inactivation of bacteria

    , Article Acta Physica Polonica A ; Volume 127, Issue 6 , 2015 , Pages 1727-1731 ; 05874246 (ISSN) Azimirad, R ; Safa, S ; Akhavan, O ; Sharif University of Technology
    Abstract
    Various morphologies of monoclinic CuO powders were synthesized by hydrothermal treatment of copper nitrate, copper acetate or copper sulfate. The synthesized samples were characterized by scanning electron microscopy, X-ray diffractometry, the Fourier transform infrared spectroscopy, and diffuse reflectance spectrophotometry. Antibacterial activity of the samples was studied against Escherichia coli bacteria in dark and under visible light irradiation. Although the different precursors yielded the same band gap energies (≈1.6 eV) for the synthesized CuO samples, they resulted in various morphologies (hierarchy of stabilized micro/nanostructures), specific surface areas, concentrations of... 

    Propane steam reforming on mesoporous NiO–MgO–SiO2 catalysts for syngas production: Effect of the MgO/SiO2 molar ratio

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 46 , 2020 , Pages 24840-24858 Barzegari, F ; Kazemeini, M ; Rezaei, M ; Farhadi, F ; Keshavarz, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, a series of NiO-xMgO-SiO2 catalysts with various MgO/SiO2 molar ratios were prepared via precipitation method followed by a hydrothermal treatment in the presence of PVP as surfactant. The synergic effect between MgO and SiO2 leading to the various characteristic and catalytic performance during propane steam reforming was investigated in detail. The results showed that 15 wt% NiO-0.5MgO–SiO2 catalyst possessed the highest catalytic activity (68.9% conversion for C3H8 at 550 °C) with a negligible amount of carbon formation after 20 h of reaction duration. This superior catalytic performance can be attributed to the enhanced basicity strength along with strong metal-support... 

    Preparation of mesoporous nanostructure NiO–MgO–SiO2 catalysts for syngas production via propane steam reforming

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 11 , 2020 , Pages 6604-6620 Barzegari, F ; Kazemeini, M ; Farhadi, F ; Rezaei, M ; Keshavarz, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, the propane steam reforming (PSR) as a promising alternative route over a mesoporous NiO–MgO–SiO2 catalyst to produce syngas (SG) was undertaken. This catalyst was prepared using a co-precipitation method followed by hydrothermal treatment. The influence of such catalyst preparation factors as the hydrothermal time and temperature, pH and calcination temperature on the physicochemical characteristics of the prepared samples were examined. Next, these materials were characterized through the BET-BJH, XRD, TPR, and FTIR analyses. The thermal stability of this catalyst was tested through the TGA and DTA techniques. Furthermore, the deactivation of the calcined catalysts at... 

    Alkali metal cation incorporation in conductive TiO2 nanoflakes with improved photoelectrochemical h2 generation

    , Article ChemElectroChem ; Volume 7, Issue 7 , March , 2020 , Pages 1699-1706 Khorashadizade, E ; Mohajernia, S ; Hejazi, S ; Mehdipour, H ; Naseri, N ; Moradlou, O ; Liu, N ; Moshfegh, A. Z ; Schmuki, P ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    In this research, we investigate the effect of alkali metal cations including Li, Na and Cs in hydrothermal solution on the morphology, stability, and photoactivity of nanostructured TiO2 nanoflakes as a photoanode. The TiO2 nanoflakes are formed through hydrothermal treatment of Ti foil in 1.0 M LiOH, NaOH or CsOH at 100 °C for 3 h. By subsequent thermal reduction of the structure in an optimized Ar/H2 environment, conductive TiO2 nanoflakes were formed. The reduction treatment remarkably improves the photocurrent density of the TiO2 nanoflakes and has the highest impact on the sample treated in the NaOH alkali solution. For the nanoflakes produced in NaOH alkali solution, the bandgap is... 

    Factors influencing the preparation of TiO2 nanopowders from titania sol

    , Article Ceramics - Silikaty ; Volume 55, Issue 1 , 2011 , Pages 31-35 ; 08625468 (ISSN) Tehrani, F. M. K ; Rashidzadeh, M ; Nemati, A ; Irandoukht, A ; Sharif University of Technology
    2011
    Abstract
    Titania nanoparticles with high photocatalytic activity were prepared from titanium alkoxide dissolved in alcohol and water under acidic conditions. The effects of the key parameters including (alkoxide/water) ratio, (alkoxide/alcohol) ratio, precursor type, solvent type, type and concentration of stabilizer, calcination temperature, presence of methylcellulose (MC) and hydrothermal treatment were studied. The optimal conditions were obtained through an experimental design technique. This technique is also used to find the main factors influencing the degradation of methylene blue (MB) and mass percent of anatase phase. The powders characteristics were investigated by XRD and... 

    Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions

    , Article Materials Science- Poland ; Volume 27, Issue 4 , 2009 , Pages 961-971 ; 01371339 (ISSN) Salarian, M ; Solati Hashjin, M ; Sara Shafiei, S ; Goudarzi, A ; Salarian, R ; Nemati, A ; Sharif University of Technology
    2009
    Abstract
    Hydroxyapatite (HAp) nanorods with uniform morphology and controllable size were successfully synthesized by precipitating Ca(NO3) 24H2O and (NH4)2HPO4 in the presence of cetyltrimethylammonium bromide (CTAB) and polyethylene glycol 400 (PEG 400) as cationic surfactant and non-ionic cosurfactant, respectively, under hydrothermal conditions. The effect of hydrothermal temperature on the composition, morphology and size of HAp particles was studied using X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Results revealed that the morphology and size of HAp particles can be effectively controlled by the presence of CTAB and PEG...